23,502 research outputs found

    Stochastic Model Predictive Control for Autonomous Mobility on Demand

    Full text link
    This paper presents a stochastic, model predictive control (MPC) algorithm that leverages short-term probabilistic forecasts for dispatching and rebalancing Autonomous Mobility-on-Demand systems (AMoD, i.e. fleets of self-driving vehicles). We first present the core stochastic optimization problem in terms of a time-expanded network flow model. Then, to ameliorate its tractability, we present two key relaxations. First, we replace the original stochastic problem with a Sample Average Approximation (SAA), and characterize the performance guarantees. Second, we separate the controller into two separate parts to address the task of assigning vehicles to the outstanding customers separate from that of rebalancing. This enables the problem to be solved as two totally unimodular linear programs, and thus easily scalable to large problem sizes. Finally, we test the proposed algorithm in two scenarios based on real data and show that it outperforms prior state-of-the-art algorithms. In particular, in a simulation using customer data from DiDi Chuxing, the algorithm presented here exhibits a 62.3 percent reduction in customer waiting time compared to state of the art non-stochastic algorithms.Comment: Submitting to the IEEE International Conference on Intelligent Transportation Systems 201

    Online Predictive Optimization Framework for Stochastic Demand-Responsive Transit Services

    Full text link
    This study develops an online predictive optimization framework for dynamically operating a transit service in an area of crowd movements. The proposed framework integrates demand prediction and supply optimization to periodically redesign the service routes based on recently observed demand. To predict demand for the service, we use Quantile Regression to estimate the marginal distribution of movement counts between each pair of serviced locations. The framework then combines these marginals into a joint demand distribution by constructing a Gaussian copula, which captures the structure of correlation between the marginals. For supply optimization, we devise a linear programming model, which simultaneously determines the route structure and the service frequency according to the predicted demand. Importantly, our framework both preserves the uncertainty structure of future demand and leverages this for robust route optimization, while keeping both components decoupled. We evaluate our framework using a real-world case study of autonomous mobility in a university campus in Denmark. The results show that our framework often obtains the ground truth optimal solution, and can outperform conventional methods for route optimization, which do not leverage full predictive distributions.Comment: 34 pages, 12 figures, 5 table

    Final report: Workshop on: Integrating electric mobility systems with the grid infrastructure

    Full text link
    EXECUTIVE SUMMARY: This document is a report on the workshop entitled “Integrating Electric Mobility Systems with the Grid Infrastructure” which was held at Boston University on November 6-7 with the sponsorship of the Sloan Foundation. Its objective was to bring together researchers and technical leaders from academia, industry, and government in order to set a short and longterm research agenda regarding the future of mobility and the ability of electric utilities to meet the needs of a highway transportation system powered primarily by electricity. The report is a summary of their insights based on workshop presentations and discussions. The list of participants and detailed Workshop program are provided in Appendices 1 and 2. Public and private decisions made in the coming decade will direct profound changes in the way people and goods are moved and the ability of clean energy sources – primarily delivered in the form of electricity – to power these new systems. Decisions need to be made quickly because of rapid advances in technology, and the growing recognition that meeting climate goals requires rapid and dramatic action. The blunt fact is, however, that the pace of innovation, and the range of business models that can be built around these innovations, has grown at a rate that has outstripped our ability to clearly understand the choices that must be made or estimate the consequences of these choices. The group of people assembled for this Workshop are uniquely qualified to understand the options that are opening both in the future of mobility and the ability of electric utilities to meet the needs of a highway transportation system powered primarily by electricity. They were asked both to explain what is known about the choices we face and to define the research issues most urgently needed to help public and private decision-makers choose wisely. This report is a summary of their insights based on workshop presentations and discussions. New communication and data analysis tools have profoundly changed the definition of what is technologically possible. Cell phones have put powerful computers, communication devices, and position locators into the pockets and purses of most Americans making it possible for Uber, Lyft and other Transportation Network Companies to deliver on-demand mobility services. But these technologies, as well as technologies for pricing access to congested roads, also open many other possibilities for shared mobility services – both public and private – that could cut costs and travel time by reducing congestion. Options would be greatly expanded if fully autonomous vehicles become available. These new business models would also affect options for charging electric vehicles. It is unclear, however, how to optimize charging (minimizing congestion on the electric grid) without increasing congestion on the roads or creating significant problems for the power system that supports such charging capacity. With so much in flux, many uncertainties cloud our vision of the future. The way new mobility services will reshape the number, length of trips, and the choice of electric vehicle charging systems and constraints on charging, and many other important behavioral issues are critical to this future but remain largely unknown. The challenge at hand is to define plausible future structures of electric grids and mobility systems, and anticipate the direct and indirect impacts of the changes involved. These insights can provide tools essential for effective private ... [TRUNCATED]Workshop funded by the Alfred P. Sloan Foundatio

    On the interaction between Autonomous Mobility-on-Demand systems and the power network: models and coordination algorithms

    Get PDF
    We study the interaction between a fleet of electric, self-driving vehicles servicing on-demand transportation requests (referred to as Autonomous Mobility-on-Demand, or AMoD, system) and the electric power network. We propose a model that captures the coupling between the two systems stemming from the vehicles' charging requirements and captures time-varying customer demand and power generation costs, road congestion, battery depreciation, and power transmission and distribution constraints. We then leverage the model to jointly optimize the operation of both systems. We devise an algorithmic procedure to losslessly reduce the problem size by bundling customer requests, allowing it to be efficiently solved by off-the-shelf linear programming solvers. Next, we show that the socially optimal solution to the joint problem can be enforced as a general equilibrium, and we provide a dual decomposition algorithm that allows self-interested agents to compute the market clearing prices without sharing private information. We assess the performance of the mode by studying a hypothetical AMoD system in Dallas-Fort Worth and its impact on the Texas power network. Lack of coordination between the AMoD system and the power network can cause a 4.4% increase in the price of electricity in Dallas-Fort Worth; conversely, coordination between the AMoD system and the power network could reduce electricity expenditure compared to the case where no cars are present (despite the increased demand for electricity) and yield savings of up $147M/year. Finally, we provide a receding-horizon implementation and assess its performance with agent-based simulations. Collectively, the results of this paper provide a first-of-a-kind characterization of the interaction between electric-powered AMoD systems and the power network, and shed additional light on the economic and societal value of AMoD.Comment: Extended version of the paper presented at Robotics: Science and Systems XIV, in prep. for journal submission. In V3, we add a proof that the socially-optimal solution can be enforced as a general equilibrium, a privacy-preserving distributed optimization algorithm, a description of the receding-horizon implementation and additional numerical results, and proofs of all theorem

    On the interaction between Autonomous Mobility-on-Demand systems and the power network: models and coordination algorithms

    Full text link
    We study the interaction between a fleet of electric, self-driving vehicles servicing on-demand transportation requests (referred to as Autonomous Mobility-on-Demand, or AMoD, system) and the electric power network. We propose a model that captures the coupling between the two systems stemming from the vehicles' charging requirements and captures time-varying customer demand and power generation costs, road congestion, battery depreciation, and power transmission and distribution constraints. We then leverage the model to jointly optimize the operation of both systems. We devise an algorithmic procedure to losslessly reduce the problem size by bundling customer requests, allowing it to be efficiently solved by off-the-shelf linear programming solvers. Next, we show that the socially optimal solution to the joint problem can be enforced as a general equilibrium, and we provide a dual decomposition algorithm that allows self-interested agents to compute the market clearing prices without sharing private information. We assess the performance of the mode by studying a hypothetical AMoD system in Dallas-Fort Worth and its impact on the Texas power network. Lack of coordination between the AMoD system and the power network can cause a 4.4% increase in the price of electricity in Dallas-Fort Worth; conversely, coordination between the AMoD system and the power network could reduce electricity expenditure compared to the case where no cars are present (despite the increased demand for electricity) and yield savings of up $147M/year. Finally, we provide a receding-horizon implementation and assess its performance with agent-based simulations. Collectively, the results of this paper provide a first-of-a-kind characterization of the interaction between electric-powered AMoD systems and the power network, and shed additional light on the economic and societal value of AMoD.Comment: Extended version of the paper presented at Robotics: Science and Systems XIV and accepted by TCNS. In Version 4, the body of the paper is largely rewritten for clarity and consistency, and new numerical simulations are presented. All source code is available (MIT) at https://dx.doi.org/10.5281/zenodo.324165
    • …
    corecore