5,215 research outputs found

    Sparse Wide-Area Control of Power Systems using Data-driven Reinforcement Learning

    Full text link
    In this paper we present an online wide-area oscillation damping control (WAC) design for uncertain models of power systems using ideas from reinforcement learning. We assume that the exact small-signal model of the power system at the onset of a contingency is not known to the operator and use the nominal model and online measurements of the generator states and control inputs to rapidly converge to a state-feedback controller that minimizes a given quadratic energy cost. However, unlike conventional linear quadratic regulators (LQR), we intend our controller to be sparse, so its implementation reduces the communication costs. We, therefore, employ the gradient support pursuit (GraSP) optimization algorithm to impose sparsity constraints on the control gain matrix during learning. The sparse controller is thereafter implemented using distributed communication. Using the IEEE 39-bus power system model with 1149 unknown parameters, it is demonstrated that the proposed learning method provides reliable LQR performance while the controller matched to the nominal model becomes unstable for severely uncertain systems.Comment: Submitted to IEEE ACC 2019. 8 pages, 4 figure

    Koopman invariant subspaces and finite linear representations of nonlinear dynamical systems for control

    Full text link
    In this work, we explore finite-dimensional linear representations of nonlinear dynamical systems by restricting the Koopman operator to an invariant subspace. The Koopman operator is an infinite-dimensional linear operator that evolves observable functions of the state-space of a dynamical system [Koopman 1931, PNAS]. Dominant terms in the Koopman expansion are typically computed using dynamic mode decomposition (DMD). DMD uses linear measurements of the state variables, and it has recently been shown that this may be too restrictive for nonlinear systems [Williams et al. 2015, JNLS]. Choosing nonlinear observable functions to form an invariant subspace where it is possible to obtain linear models, especially those that are useful for control, is an open challenge. Here, we investigate the choice of observable functions for Koopman analysis that enable the use of optimal linear control techniques on nonlinear problems. First, to include a cost on the state of the system, as in linear quadratic regulator (LQR) control, it is helpful to include these states in the observable subspace, as in DMD. However, we find that this is only possible when there is a single isolated fixed point, as systems with multiple fixed points or more complicated attractors are not globally topologically conjugate to a finite-dimensional linear system, and cannot be represented by a finite-dimensional linear Koopman subspace that includes the state. We then present a data-driven strategy to identify relevant observable functions for Koopman analysis using a new algorithm to determine terms in a dynamical system by sparse regression of the data in a nonlinear function space [Brunton et al. 2015, arxiv]; we show how this algorithm is related to DMD. Finally, we demonstrate how to design optimal control laws for nonlinear systems using techniques from linear optimal control on Koopman invariant subspaces.Comment: 20 pages, 5 figures, 2 code

    Closed-Loop Control of a Piezo-Fluidic Amplifier

    Full text link
    Fluidic valves based on the Coand\u{a} effect are increasingly being considered for use in aerodynamic flow control applications. A limiting factor is their variation in switching time, which often precludes their use. The purpose of this paper is to demonstrate the closed-loop control of a recently developed, novel piezo-fluidic valve that reduces response time uncertainty at the expense of operating bandwidth. Use is made of the fact that a fluidic jet responds to a piezo tone by deflecting away from its steady state position. A control signal used to vary this deflection is amplitude modulated onto the piezo tone. Using only a pressure measurement from one of the device output channels, an output-based LQG regulator was designed to follow a desired reference deflection, achieving control of a 90 m/s jet. Finally, the controller's performance in terms of disturbance rejection and response time predictability is demonstrated.Comment: 31 pages, 23 figures. Published in AIAA Journal, 4th May 202

    The Caltech helicopter control experiment

    Get PDF
    This report describes the Caltech helicopter control experiment. The experiment consists of an electric model helicopter interfaced to and controlled by a PC. We describe the hardware and software. A state-space model for the angular position is identified from experimental data near hover, using the prediction error method. An LQR controller with integrators for set point tracking is designed for the system. We also undertake a separate identification and loop shaping control for the yaw dynamics
    • …
    corecore