368 research outputs found

    Interactive, multi-purpose traffic prediction platform using connected vehicles dataset

    Get PDF
    Traffic congestion is a perennial issue because of the increasing traffic demand yet limited budget for maintaining current transportation infrastructure; let alone expanding them. Many congestion management techniques require timely and accurate traffic estimation and prediction. Examples of such techniques include incident management, real-time routing, and providing accurate trip information based on historical data. In this dissertation, a speech-powered traffic prediction platform is proposed, which deploys a new deep learning algorithm for traffic prediction using Connected Vehicles (CV) data. To speed-up traffic forecasting, a Graph Convolution -- Gated Recurrent Unit (GC-GRU) architecture is proposed and analysis of its performance on tabular data is compared to state-of-the-art models. GC-GRU's Mean Absolute Percentage Error (MAPE) was very close to Transformer (3.16 vs 3.12) while achieving the fastest inference time and a six-fold faster training time than Transformer, although Long-Short-Term Memory (LSTM) was the fastest in training. Such improved performance in traffic prediction with a shorter inference time and competitive training time allows the proposed architecture to better cater to real-time applications. This is the first study to demonstrate the advantage of using multiscale approach by combining CV data with conventional sources such as Waze and probe data. CV data was better at detecting short duration, Jam and stand-still incidents and detected them earlier as compared to probe. CV data excelled at detecting minor incidents with a 90 percent detection rate versus 20 percent for probes and detecting them 3 minutes faster. To process the big CV data faster, a new algorithm is proposed to extract the spatial and temporal features from the CSV files into a Multiscale Data Analysis (MDA). The algorithm also leverages Graphics Processing Unit (GPU) using the Nvidia Rapids framework and Dask parallel cluster in Python. The results show a seventy-fold speedup in the data Extract, Transform, Load (ETL) of the CV data for the State of Missouri of an entire day for all the unique CV journeys (reducing the processing time from about 48 hours to 25 minutes). The processed data is then fed into a customized UNet model that learns highlevel traffic features from network-level images to predict large-scale, multi-route, speed and volume of CVs. The accuracy and robustness of the proposed model are evaluated by taking different road types, times of day and image snippets of the developed model and comparable benchmarks. To visually analyze the historical traffic data and the results of the prediction model, an interactive web application powered by speech queries is built to offer accurate and fast insights of traffic performance, and thus, allow for better positioning of traffic control strategies. The product of this dissertation can be seamlessly deployed by transportation authorities to understand and manage congestions in a timely manner.Includes bibliographical references

    Developing a Data-Driven Safety Assessment Framework for RITI Communities in Washington State

    Get PDF
    In the history of this country, rural, isolated, indigenous, and tribal (RITI) communities were commonly overlooked with regards to social infrastructure and support. This issue is evident in the development of the transportation networks of these areas and the distinct lack of road safety in these types of communities. RITI communities carry a significantly disproportionate amount of traffic collisions and fatalities compared to urban areas. In order to improve the traffic safety conditions of the RITI communities in Washington State, it is necessary to build a traffic safety management system. A baseline data platform was developed by integrating the collected safety related data for the RITI communities in Washington State in the Year 1 Center for Safety Equity in Transportation (CSET) project. Besides the baseline data, the traffic safety management also requires the safety assessment framework, which is the corner stone of the traffic safety management system. Therefore, this project aims to develop a data-driven safety assessment framework to enable an effective roadway safety management system and improve the traffic safety conditions for RITI communities. The framework is based on an effective and efficient database management system for traffic and crash-related data of the RITI communities. In addition, in order to assist transportation agencies in practices such as the identification of high-risk roadway segments, the developed database management system has powerful visualization functions. Besides the database management and visualization platform, this project also develops roadway safety performance indices and traffic safety assessment methods in the safety assessment framework. This project also provides guidance on how to utilize these safety performance indices and results of safety assessment methods for visualization and analysis

    MusA: Using Indoor Positioning and Navigation to Enhance Cultural Experiences in a museum

    Get PDF
    In recent years there has been a growing interest into the use of multimedia mobile guides in museum environments. Mobile devices have the capabilities to detect the user context and to provide pieces of information suitable to help visitors discovering and following the logical and emotional connections that develop during the visit. In this scenario, location based services (LBS) currently represent an asset, and the choice of the technology to determine users' position, combined with the definition of methods that can effectively convey information, become key issues in the design process. In this work, we present MusA (Museum Assistant), a general framework for the development of multimedia interactive guides for mobile devices. Its main feature is a vision-based indoor positioning system that allows the provision of several LBS, from way-finding to the contextualized communication of cultural contents, aimed at providing a meaningful exploration of exhibits according to visitors' personal interest and curiosity. Starting from the thorough description of the system architecture, the article presents the implementation of two mobile guides, developed to respectively address adults and children, and discusses the evaluation of the user experience and the visitors' appreciation of these application

    GeoAI-enhanced Techniques to Support Geographical Knowledge Discovery from Big Geospatial Data

    Get PDF
    abstract: Big data that contain geo-referenced attributes have significantly reformed the way that I process and analyze geospatial data. Compared with the expected benefits received in the data-rich environment, more data have not always contributed to more accurate analysis. “Big but valueless” has becoming a critical concern to the community of GIScience and data-driven geography. As a highly-utilized function of GeoAI technique, deep learning models designed for processing geospatial data integrate powerful computing hardware and deep neural networks into various dimensions of geography to effectively discover the representation of data. However, limitations of these deep learning models have also been reported when People may have to spend much time on preparing training data for implementing a deep learning model. The objective of this dissertation research is to promote state-of-the-art deep learning models in discovering the representation, value and hidden knowledge of GIS and remote sensing data, through three research approaches. The first methodological framework aims to unify varied shadow into limited number of patterns, with the convolutional neural network (CNNs)-powered shape classification, multifarious shadow shapes with a limited number of representative shadow patterns for efficient shadow-based building height estimation. The second research focus integrates semantic analysis into a framework of various state-of-the-art CNNs to support human-level understanding of map content. The final research approach of this dissertation focuses on normalizing geospatial domain knowledge to promote the transferability of a CNN’s model to land-use/land-cover classification. This research reports a method designed to discover detailed land-use/land-cover types that might be challenging for a state-of-the-art CNN’s model that previously performed well on land-cover classification only.Dissertation/ThesisDoctoral Dissertation Geography 201

    Towards Artificial General Intelligence (AGI) in the Internet of Things (IoT): Opportunities and Challenges

    Full text link
    Artificial General Intelligence (AGI), possessing the capacity to comprehend, learn, and execute tasks with human cognitive abilities, engenders significant anticipation and intrigue across scientific, commercial, and societal arenas. This fascination extends particularly to the Internet of Things (IoT), a landscape characterized by the interconnection of countless devices, sensors, and systems, collectively gathering and sharing data to enable intelligent decision-making and automation. This research embarks on an exploration of the opportunities and challenges towards achieving AGI in the context of the IoT. Specifically, it starts by outlining the fundamental principles of IoT and the critical role of Artificial Intelligence (AI) in IoT systems. Subsequently, it delves into AGI fundamentals, culminating in the formulation of a conceptual framework for AGI's seamless integration within IoT. The application spectrum for AGI-infused IoT is broad, encompassing domains ranging from smart grids, residential environments, manufacturing, and transportation to environmental monitoring, agriculture, healthcare, and education. However, adapting AGI to resource-constrained IoT settings necessitates dedicated research efforts. Furthermore, the paper addresses constraints imposed by limited computing resources, intricacies associated with large-scale IoT communication, as well as the critical concerns pertaining to security and privacy

    Deep Learning Models and Tools for Disaster Evacuation and Routing

    Get PDF
    MoDOT project # TR202202Engineering managers and transportations planners need robust tools to communicate evacuation routing plans following disruptions from earthquake events. The project will use the New Madrid Seismic Zone in South-East Missouri as a testbed for modeling the response to an earthquake and aftershocks at Magnitude 8+. This area was chosen as it allows solutions to specific regions with inadequate road networks, limited communications protocols, and high likelihood of structural damage for the proposed scenario. Research tasks include identifying road structure damage based on the Mercalli Intensity Scale, running traffic simulations for post-earthquake evacuation to determine the desired routes out of the area. This research will then be able to display the warning of the earthquake event along with the desired route for the end user. Effectively providing the safest navigation routes are a vital part of these planning efforts

    Training of Crisis Mappers and Map Production from Multi-sensor Data: Vernazza Case Study (Cinque Terre National Park, Italy)

    Get PDF
    This aim of paper is to presents the development of a multidisciplinary project carried out by the cooperation between Politecnico di Torino and ITHACA (Information Technology for Humanitarian Assistance, Cooperation and Action). The goal of the project was the training in geospatial data acquiring and processing for students attending Architecture and Engineering Courses, in order to start up a team of "volunteer mappers". Indeed, the project is aimed to document the environmental and built heritage subject to disaster; the purpose is to improve the capabilities of the actors involved in the activities connected in geospatial data collection, integration and sharing. The proposed area for testing the training activities is the Cinque Terre National Park, registered in the World Heritage List since 1997. The area was affected by flood on the 25th of October 2011. According to other international experiences, the group is expected to be active after emergencies in order to upgrade maps, using data acquired by typical geomatic methods and techniques such as terrestrial and aerial Lidar, close-range and aerial photogrammetry, topographic and GNSS instruments etc.; or by non conventional systems and instruments such us UAV, mobile mapping etc. The ultimate goal is to implement a WebGIS platform to share all the data collected with local authorities and the Civil Protectio

    Complexity aided design: The FuturICT technological innovation paradigm

    Get PDF
    "In the next century, planet earth will don an electronic skin. It will use the Internet as a scaffold to support and transmit its sensations. This skin is already being stitched together. It consists of millions of embedded electronic measuring devices: thermostats, pressure gauges, pollution detectors, cameras, microphones, glucose sensors, EKGs, electroencephalographs. These will probe and monitor cities and endangered species, the atmosphere, our ships, highways and fleets of trucks, our conversations, our bodies-even our dreams ....What will the earth's new skin permit us to feel? How will we use its surges of sensation? For several years-maybe for a decade-there will be no central nervous system to manage this vast signaling network. Certainly there will be no central intelligence...some qualities of self-awareness will emerge once the Net is sensually enhanced. Sensuality is only one force pushing the Net toward intelligence”. These statements are quoted by an interview by Cherry Murray, Dean of the Harvard School of Engineering and Applied Sciences and Professor of Physics. It is interesting to outline the timeliness and highly predicting power of these statements. In particular, we would like to point to the relevance of the question "What will the earth's new skin permit us to feel?” to the work we are going to discuss in this paper. There are many additional compelling questions, as for example: "How can the electronic earth's skin be made more resilient?”; "How can the earth's electronic skin be improved to better satisfy the need of our society?”;"What can the science of complex systems contribute to this endeavour?” Graphical abstrac
    corecore