11 research outputs found

    Adapting Highly-Dynamic Compliant Movements to Changing Environments: A Benchmark Comparison of Reflex- vs. CPG-Based Control Strategies

    Get PDF
    To control highly-dynamic compliant motions such as running or hopping, vertebrates rely on reflexes and Central Pattern Generators (CPGs) as core strategies. However, decoding how much each strategy contributes to the control and how they are adjusted under different conditions is still a major challenge. To help solve this question, the present paper provides a comprehensive comparison of reflexes, CPGs and a commonly used combination of the two applied to a biomimetic robot. It leverages recent findings indicating that in mammals both control principles act within a low-dimensional control submanifold. This substantially reduces the search space of parameters and enables the quantifiable comparison of the different control strategies. The chosen metrics are motion stability and energy efficiency, both key aspects for the evolution of the central nervous system. We find that neither for stability nor energy efficiency it is favorable to apply the state-of-the-art approach of a continuously feedback-adapted CPG. In both aspects, a pure reflex is more effective, but the pure CPG allows easy signal alteration when needed. Additionally, the hardware experiments clearly show that the shape of a control signal has a strong influence on energy efficiency, while previous research usually only focused on frequency alignment. Both findings suggest that currently used methods to combine the advantages of reflexes and CPGs can be improved. In future research, possible combinations of the control strategies should be reconsidered, specifically including the modulation of the control signal's shape. For this endeavor, the presented setup provides a valuable benchmark framework to enable the quantitative comparison of different bioinspired control principles

    Mechanical design and analysis of a novel three-legged, compact, lightweight, omnidirectional, serial–parallel robot with compliant agile legs

    Get PDF
    In this work, the concept and mechanical design of a novel compact, lightweight, omnidirectional three-legged robot, featuring a hybrid serial–parallel topology including leg compliance is proposed. The proposal focusses deeply on the design aspects of the mechanical realisation of the robot based on its 3D-CAD assembly, while also discussing the results of multi-body simulations, exploring the characteristic properties of the mechanical system, regarding the locomotion feasibility of the robot model. Finally, a real-world prototype depicting a single robot leg is presented, which was built by highly leaning into a composite design, combining complex 3D-printed parts with stiff aluminium and polycarbonate parts, allowing for a mechanically dense and slim construction. Eventually, experiments on the prototype leg are demonstrated, showing the mechanical model operating in the real world

    Advancing Musculoskeletal Robot Design for Dynamic and Energy-Efficient Bipedal Locomotion

    Get PDF
    Achieving bipedal robot locomotion performance that approaches human performance is a challenging research topic in the field of humanoid robotics, requiring interdisciplinary expertise from various disciplines, including neuroscience and biomechanics. Despite the remarkable results demonstrated by current humanoid robots---they can walk, stand, turn, climb stairs, carry a load, push a cart---the versatility, stability, and energy efficiency of humans have not yet been achieved. However, with robots entering our lives, whether in the workplace, in clinics, or in normal household environments, such improvements are increasingly important. The current state of research in bipedal robot locomotion reveals that several groups have continuously demonstrated enhanced locomotion performance of the developed robots. But each of these groups has taken a unilateral approach and placed the focus on only one aspect, in order to achieve enhanced movement abilities;---for instance, the motion control and postural stability or the mechanical design. The neural and mechanical systems in human and animal locomotion, however, are strongly coupled and should therefore not be treated separately. Human-inspired musculoskeletal design of bipedal robots offers great potential for enhanced dynamic and energy-efficient locomotion but also imposes major challenges for motion planning and control. In this thesis, we first present a detailed review of the problems related to achieving enhanced dynamic and energy-efficient bipedal locomotion, from various important perspectives, and examine the essential properties of the human locomotory apparatus. Subsequently, existing insights and approaches from biomechanics, to understand the neuromechanical motion apparatus, and from robotics, to develop more human-like robots that can move in our environment, are discussed in detail. These thorough investigations of the interrelated essential design decisions are used to develop a novel design for a musculoskeletal bipedal robot, BioBiped1, such that, in the long term, it is capable of realizing dynamic hopping, running, and walking motions. The BioBiped1 robot features a highly compliant tendon-driven actuation system that mimics key functionalities of the human lower limb system. In experiments, BioBiped1's locomotor function for the envisioned gaits is validated globally. It is shown that the robot is able to rebound passively, store and release energy, and actively push off from the ground. The proof of concept of BioBiped1's locomotor function, however, marks only the starting point for our investigations, since this novel design concept opens up a number of questions regarding the required design complexity for the envisioned motions and the appropriate motion generation and control concept. For this purpose, a simulator specifically designed for the requirements of musculoskeletally actuated robotic systems, including sufficiently realistic ground reaction forces, is developed. It relies on object-oriented design and is based on a numerical solver, without model switching, to enable the analysis of impact peak forces and the simulation of flight phases. The developed library also contains the models of the actuated and passive mono- and biarticular elastic tendons and a penalty-based compliant contact model with nonlinear damping, to incorporate the collision, friction, and stiction forces occurring during ground contact. Using these components, the full multibody system (MBS) dynamics model is developed. To ensure a sufficiently similar behavior of the simulated and the real musculoskeletal robot, various measurements and parameter identifications for sub-models are performed. Finally, it is shown that the simulation model behaves similarly to the real robot platform. The intelligent combination of actuated and passive mono- and biarticular tendons, imitating important human muscle groups, offers tremendous potential for improved locomotion performance but also requires a sophisticated concept for motion control of the robot. Therefore, a further contribution of this thesis is the development of a centralized, nonlinear model-based method for motion generation and control that utilizes the derived detailed dynamics models of the implemented actuators. The concept is used to realize both computer-generated hopping and human jogging motions. Additionally, the problem of appropriate motor-gear unit selection prior to the robot's construction is tackled, using this method. The thesis concludes with a number of simulation studies in which several leg actuation designs are examined for their optimality with regard to systematically selected performance criteria. Furthermore, earlier paradoxical biomechanical findings about biarticular muscles in running are presented and, for the first time, investigated by detailed simulation of the motion dynamics. Exploring the Lombard paradox, a novel reduced and energy-efficient locomotion model without knee extensor has been simulated successfully. The models and methods developed within this thesis, as well as the insights gained, are already being employed to develop future prototypes. In particular, the optimal dimensioning and setting of the actuators, including all mono- and biarticular muscle-tendon units, are based on the derived design guidelines and are extensively validated by means of the simulation models and the motion control method. These developments are expected to significantly enhance progress in the field of bipedal robot design and, in the long term, to drive improvements in rehabilitation for humans through an understanding of the neuromechanics underlying human walking and the application of this knowledge to the design of prosthetics

    Mechanism and Behaviour Co-optimisation of High Performance Mobile Robots

    Get PDF
    Mobile robots do not display the level of physical performance one would expect, given the specifications of their hardware. This research is based on the idea that their poor performance is at least partly due to their design, and proposes an optimisation approach for the design of high-performance mobile robots. The aim is to facilitate the design process, and produce versatile and robust robots that can exploit the maximum potential of today's technology. This can be achieved by a systematic optimisation study that is based on careful modelling of the robot's dynamics and its limitations, and takes into consideration the performance requirements that the robot is designed to meet. The approach is divided into two parts: (1) an optimisation framework, and (2) an optimisation methodology. In the framework, designs that can perform a large set of tasks are sought, by simultaneously optimising the design and the behaviours to perform them. The optimisation methodology consists of several stages, where various techniques are used for determining the design's most important parameters, and for maximising the chances of finding the best possible design based on the designer's evaluation criteria. The effectiveness of the optimisation approach is proved via a specific case-study of a high-performance balancing and hopping monopedal robot. The outcome is a robot design and a set of optimal behaviours that can meet several performance requirements of conflicting nature, by pushing the hardware to its limits in a safe way. The findings of this research demonstrate the importance of using realistic models, and taking into consideration the tasks that the robot is meant to perform in the design process

    Towards Robust Bipedal Locomotion:From Simple Models To Full-Body Compliance

    Get PDF
    Thanks to better actuator technologies and control algorithms, humanoid robots to date can perform a wide range of locomotion activities outside lab environments. These robots face various control challenges like high dimensionality, contact switches during locomotion and a floating-base nature which makes them fall all the time. A rich set of sensory inputs and a high-bandwidth actuation are often needed to ensure fast and effective reactions to unforeseen conditions, e.g., terrain variations, external pushes, slippages, unknown payloads, etc. State of the art technologies today seem to provide such valuable hardware components. However, regarding software, there is plenty of room for improvement. Locomotion planning and control problems are often treated separately in conventional humanoid control algorithms. The control challenges mentioned above are probably the main reason for such separation. Here, planning refers to the process of finding consistent open-loop trajectories, which may take arbitrarily long computations off-line. Control, on the other hand, should be done very fast online to ensure stability. In this thesis, we want to link planning and control problems again and enable for online trajectory modification in a meaningful way. First, we propose a new way of describing robot geometries like molecules which breaks the complexity of conventional models. We use this technique and derive a planning algorithm that is fast enough to be used online for multi-contact motion planning. Similarly, we derive 3LP, a simplified linear three-mass model for bipedal walking, which offers orders of magnitude faster computations than full mechanical models. Next, we focus more on walking and use the 3LP model to formulate online control algorithms based on the foot-stepping strategy. The method is based on model predictive control, however, we also propose a faster controller with time-projection that demonstrates a close performance without numerical optimizations. We also deploy an efficient implementation of inverse dynamics together with advanced sensor fusion and actuator control algorithms to ensure a precise and compliant tracking of the simplified 3LP trajectories. Extensive simulations and hardware experiments on COMAN robot demonstrate effectiveness and strengths of our method. This thesis goes beyond humanoid walking applications. We further use the developed modeling tools to analyze and understand principles of human locomotion. Our 3LP model can describe the exchange of energy between human limbs in walking to some extent. We use this property to propose a metabolic-cost model of human walking which successfully describes trends in various conditions. The intrinsic power of the 3LP model to generate walking gaits in all these conditions makes it a handy solution for walking control and gait analysis, despite being yet a simplified model. To fill the reality gap, finally, we propose a kinematic conversion method that takes 3LP trajectories as input and generates more human-like postures. Using this method, the 3LP model, and the time-projecting controller, we introduce a graphical user interface in the end to simulate periodic and transient human-like walking conditions. We hope to use this combination in future to produce faster and more human-like walking gaits, possibly with more capable humanoid robots

    Challenges in the Locomotion of Self-Reconfigurable Modular Robots

    Get PDF
    Self-Reconfigurable Modular Robots (SRMRs) are assemblies of autonomous robotic units, referred to as modules, joined together using active connection mechanisms. By changing the connectivity of these modules, SRMRs are able to deliberately change their own shape in order to adapt to new environmental circumstances. One of the main motivations for the development of SRMRs is that conventional robots are limited in their capabilities by their morphology. The promise of the field of self-reconfigurable modular robotics is to design robots that are robust, self-healing, versatile, multi-purpose, and inexpensive. Despite significant efforts by numerous research groups worldwide, the potential advantages of SRMRs have yet to be realized. A high number of degrees of freedom and connectors make SRMRs more versatile, but also more complex both in terms of mechanical design and control algorithms. Scalability issues affect these robots in terms of hardware, low-level control, and high-level planning. In this thesis we identify and target three major challenges: (i) Hardware design; (ii) Planning and control; and, (iii) Application challenges. To tackle the hardware challenges we redesigned and manufactured the Self-Reconfigurable Modular Robot Roombots to meet desired requirements and characteristics. We explored in detail and improved two major mechanical components of an SRMR: the actuation and the connection mechanisms. We also analyzed the use of compliant extensions to increase locomotion performance in terms of locomotion speed and power consumption. We contributed to the control challenge by developing new methods that allow an arbitrary SRMR structure to learn to locomote in an efficient way. We defined a novel bio-inspired locomotion-learning framework that allows the quick and reliable optimization of new gaits after a morphological change due to self-reconfiguration or human construction. In order to find new suitable application scenarios for SRMRs we envision the use of Roombots modules to create Self-Reconfigurable Robotic Furniture. As a first step towards this vision, we explored the use and control of Plug-n-Play Robotic Elements that can augment existing pieces of furniture and create new functionalities in a household to improve quality of life

    Conference on Intelligent Robotics in Field, Factory, Service, and Space (CIRFFSS 1994), volume 1

    Get PDF
    The AIAA/NASA Conference on Intelligent Robotics in Field, Factory, Service, and Space (CIRFFSS '94) was originally proposed because of the strong belief that America's problems of global economic competitiveness and job creation and preservation can partly be solved by the use of intelligent robotics, which are also required for human space exploration missions. Individual sessions addressed nuclear industry, agile manufacturing, security/building monitoring, on-orbit applications, vision and sensing technologies, situated control and low-level control, robotic systems architecture, environmental restoration and waste management, robotic remanufacturing, and healthcare applications

    Proceedings of the NASA Conference on Space Telerobotics, volume 5

    Get PDF
    Papers presented at the NASA Conference on Space Telerobotics are compiled. The theme of the conference was man-machine collaboration in space. The conference provided a forum for researchers and engineers to exchange ideas on the research and development required for the application of telerobotics technology to the space systems planned for the 1990's and beyond. Volume 5 contains papers related to the following subject areas: robot arm modeling and control, special topics in telerobotics, telerobotic space operations, manipulator control, flight experiment concepts, manipulator coordination, issues in artificial intelligence systems, and research activities at the Johnson Space Center

    Data-Driven Discrete Planning for Targeted Hopping of Compliantly Actuated Robotic Legs

    Get PDF
    Motion planning for fast locomotion of compliantly actuated robotic legs is generally considered to be a challenging issue, posing considerable real-time problems. This is at least the case if time-continuous trajectories need to be generated online. In this paper we take advantage of a simple controller structure, which reduces the motion planning to a discrete-time planning problem, in which only a small set of input parameters need to be determined for each step. We show that for a planar leg with serial elastic actuation, hopping on a ground with stairs of irregular length and height can be planned online, based on a parameter mapping which has been learned in a data-driven manner by performing hopping trials with an adaptive exploration algorithm to evenly sample the parameter space. Experiments on a planar hopping leg prototype validate the approach
    corecore