6,108 research outputs found

    A finite element modelling methodology for the non-linear stiffness evaluation of adhesively bonded single lap-joints. Part 2, Novel shell mesh to minimise analysis time

    Get PDF
    A new modelling methodology is presented that enables the stiffness of adhesively bonded single lap-joints to be included in the finite element analysis of whole vehicle bodies. This work was driven by the need to significantly reduce computing resources for vehicle analysis. To achieve this goal the adhesive bond line and adherends are modelled by a relatively ‘small’ number of shell elements to replace the usual solid element mesh for a reliable analysis. Previous work in Part 1 has provided the necessary background information to develop and verify the new finite element analysis that reduces the solution runtime by a factor of 1000. Although a joint’s non-linear stiffness is reliably simulated to failure load, it is recognised by the authors that the coarse shell mesh cannot provide accurate peak stresses or peak strains for the successful application of a numerical failure criterion. Given that the new modelling methodology is very quick to apply to existing shell models of vehicle bodies, it is recommended for use by the stress analyst who requires, say at the preliminary design stage, whole vehicle stiffness performance in a significantly reduced timeframe

    Geometry of wave propagation on active deformable surfaces

    Get PDF
    Fundamental biological and biomimetic processes, from tissue morphogenesis to soft robotics, rely on the propagation of chemical and mechanical surface waves to signal and coordinate active force generation. The complex interplay between surface geometry and contraction wave dynamics remains poorly understood, but will be essential for the future design of chemically-driven soft robots and active materials. Here, we couple prototypical chemical wave and reaction-diffusion models to non-Euclidean shell mechanics to identify and characterize generic features of chemo-mechanical wave propagation on active deformable surfaces. Our theoretical framework is validated against recent data from contractile wave measurements on ascidian and starfish oocytes, producing good quantitative agreement in both cases. The theory is then applied to illustrate how geometry and preexisting discrete symmetries can be utilized to focus active elastic surface waves. We highlight the practical potential of chemo-mechanical coupling by demonstrating spontaneous wave-induced locomotion of elastic shells of various geometries. Altogether, our results show how geometry, elasticity and chemical signaling can be harnessed to construct dynamically adaptable, autonomously moving mechanical surface wave guides.Comment: text changes abstract and intro, new results on self-propelled elastic shells added; 5 pages, 3 figures; videos available on reques

    Buckling of Carbon Nanotubes: A State of the Art Review

    Full text link
    The nonlinear mechanical response of carbon nanotubes, referred to as their "buckling" behavior, is a major topic in the nanotube research community. Buckling means a deformation process in which a large strain beyond a threshold causes an abrupt change in the strain energy vs. deformation profile. Thus far, much effort has been devoted to analysis of the buckling of nanotubes under various loading conditions: compression, bending, torsion, and their certain combinations. Such extensive studies have been motivated by (i) the structural resilience of nanotubes against buckling and (ii) the substantial influence of buckling on their physical properties. In this contribution, I review the dramatic progress in nanotube buckling research during the past few years.Comment: 38 pages, 21 figure

    Somatosensory neurons integrate the geometry of skin deformation and mechanotransduction channels to shape touch sensing.

    Get PDF
    Touch sensation hinges on force transfer across the skin and activation of mechanosensitive ion channels along the somatosensory neurons that invade the skin. This skin-nerve sensory system demands a quantitative model that spans the application of mechanical loads to channel activation. Unlike prior models of the dynamic responses of touch receptor neurons in Caenorhabditis elegans (Eastwood et al., 2015), which substituted a single effective channel for the ensemble along the TRNs, this study integrates body mechanics and the spatial recruitment of the various channels. We demonstrate that this model captures mechanical properties of the worm's body and accurately reproduces neural responses to simple stimuli. It also captures responses to complex stimuli featuring non-trivial spatial patterns, like extended or multiple contacts that could not be addressed otherwise. We illustrate the importance of these effects with new experiments revealing that skin-neuron composites respond to pre-indentation with increased currents rather than adapting to persistent stimulation

    Piezo-electromechanical smart materials with distributed arrays of piezoelectric transducers: Current and upcoming applications

    Get PDF
    This review paper intends to gather and organize a series of works which discuss the possibility of exploiting the mechanical properties of distributed arrays of piezoelectric transducers. The concept can be described as follows: on every structural member one can uniformly distribute an array of piezoelectric transducers whose electric terminals are to be connected to a suitably optimized electric waveguide. If the aim of such a modification is identified to be the suppression of mechanical vibrations then the optimal electric waveguide is identified to be the 'electric analog' of the considered structural member. The obtained electromechanical systems were called PEM (PiezoElectroMechanical) structures. The authors especially focus on the role played by Lagrange methods in the design of these analog circuits and in the study of PEM structures and we suggest some possible research developments in the conception of new devices, in their study and in their technological application. Other potential uses of PEMs, such as Structural Health Monitoring and Energy Harvesting, are described as well. PEM structures can be regarded as a particular kind of smart materials, i.e. materials especially designed and engineered to show a specific andwell-defined response to external excitations: for this reason, the authors try to find connection between PEM beams and plates and some micromorphic materials whose properties as carriers of waves have been studied recently. Finally, this paper aims to establish some links among some concepts which are used in different cultural groups, as smart structure, metamaterial and functional structural modifications, showing how appropriate would be to avoid the use of different names for similar concepts. © 2015 - IOS Press and the authors
    • …
    corecore