98 research outputs found

    Energy-aware peering routing protocol for indoor hospital body area network communication

    Get PDF
    The recent research in Body Area Networks (BAN) is focused on making its communication more reliable, energy efficient, secure, and to better utilize system resources. In this paper we propose a novel BAN network architecture for indoor hospital environments, and a new mechanism of peer discovery with routing table construction that helps to reduce network traffic load, energy consumption, and improves BAN reliability. We have performed extensive simulations in the Castalia simulation environment to show that our proposed protocol has better performance in terms of reduced BAN traffic load, increased number of successful packets received by nodes, reduced number of packets forwarded by intermediate nodes, and overall lower energy consumption compared to other protocols

    A self-organized dynamic clustering method and its multiple access mechanism for multiple WBANs

    Get PDF
    Due to its wide application range and attractive features, wireless body area networks (WBANs) is considered as a revolutionary technology, which is envisaged to change how people manage and think about their health and their life styles. In this paper, we propose a self-organized dynamic clustering (SDC) method and its multiple access mechanism to mitigate the interference and improve the QoS in multiple WBANs environment. To the best of our knowledge, this is the first paper that focuses on the spectrum allocation for multiple WBANs. We borrow the concepts of cell and cluster from cellular networks to allocate the channels for different WBANs. The clustering is self-organized to improve the data transmission for intra-WBAN communication by the information exchange via inter-WBAN communication. Additionally, based on the cluster architecture, an inter-WBAN relaying (IWR) protocol for packets with low privacy or high reliability is also investigated. The simulation results show that SDC has better signal to interference ratio compared with existing framework. Besides, SDC and IWR also provide better QoS performance in terms of higher data packet delivery ratio and lower packet delay

    ZEQoS: a new energy and QoS-aware routing protocol for communication of sensor devices in healthcare system

    Get PDF
    Publisher's Version/PDFThis paper proposes a novel integrated energy and QoS-aware routing protocol with the considerations of energy, end-to-end latency, and reliability requirements of body area network (BAN) communication. The proposed routing protocol, called ZEQoS, introduces two main modules (MAC layer and network layer) and three algorithms (neighbor table constructor, routing table constructor, and path selector). To handle ordinary packets (OPs), delay-sensitive packets (DSPs), and reliability-sensitive packets (RSPs), the new mechanism first calculates the communication costs, end-to-end path delays, and end-to-end path reliabilities of all possible paths from a source to destination. The protocol then selects the best possible path(s) for OPs, RSPs, and DSPs by considering their QoS requirement. Extensive simulations using OMNeT++ based simulator Castalia 3.2 demonstrate that the performance of the proposed integrated algorithm is satisfactory when tested on a real hospital scenario, and all data types including OPs, DSPs, and RSPs are used as offered traffic. Simulations also show that the ZEQoS also offers better performance in terms of higher throughput, less packets dropped on MAC and network layers, and lower network traffic than comparable protocols including DMQoS and noRouting

    Interference-aware multipath video streaming in vehicular environments

    Get PDF
    The multipath transmission is one of the suitable transmission methods for high data rate oriented communication such as video streaming. Each video packets are split into smaller frames for parallel transmission via different paths. One path may interfere with another path due to these parallel transmissions. The multipath oriented interference is due to the route coupling which is one of the major challenges in vehicular traffic environments. The route coupling increases channel contention resulting in video packet collision. In this context, this paper proposes an Interference-aware Multipath Video Streaming (I-MVS) framework focusing on link and node disjoint optimal paths. Specifically, a multipath vehicular network model is derived. The model is utilized to develop interference-aware video streaming method considering angular driving statistics of vehicles. The quality of video streaming links is measured based on packet error rate considering non-circular transmission range oriented shadowing effects. Algorithms are developed as a complete operational I-MVS framework. The comparative performance evaluation attests the benefit of the proposed framework considering various video streaming related metrics

    Mobile Ad Hoc Networks

    Get PDF
    Guiding readers through the basics of these rapidly emerging networks to more advanced concepts and future expectations, Mobile Ad hoc Networks: Current Status and Future Trends identifies and examines the most pressing research issues in Mobile Ad hoc Networks (MANETs). Containing the contributions of leading researchers, industry professionals, and academics, this forward-looking reference provides an authoritative perspective of the state of the art in MANETs. The book includes surveys of recent publications that investigate key areas of interest such as limited resources and the mobility of mobile nodes. It considers routing, multicast, energy, security, channel assignment, and ensuring quality of service. Also suitable as a text for graduate students, the book is organized into three sections: Fundamentals of MANET Modeling and Simulation—Describes how MANETs operate and perform through simulations and models Communication Protocols of MANETs—Presents cutting-edge research on key issues, including MAC layer issues and routing in high mobility Future Networks Inspired By MANETs—Tackles open research issues and emerging trends Illustrating the role MANETs are likely to play in future networks, this book supplies the foundation and insight you will need to make your own contributions to the field. It includes coverage of routing protocols, modeling and simulations tools, intelligent optimization techniques to multicriteria routing, security issues in FHAMIPv6, connecting moving smart objects to the Internet, underwater sensor networks, wireless mesh network architecture and protocols, adaptive routing provision using Bayesian inference, and adaptive flow control in transport layer using genetic algorithms
    • 

    corecore