825 research outputs found

    Model-based control for high-tech mechatronic systems

    Get PDF
    Motion systems are mechanical systems with actuators with the primary function to position a load. The actuator can be either hydraulic, pneumatic, or electric. The feedback controller is typically designed using frequency domain techniques, in particular via manual loop-shaping. In addition to the feedback controller, a feedforward controller is often implemented with acceleration, velocity, and friction feedforward for the reference signal. This chapter provides an overview of a systematic control design procedure for motion systems that has proven its use in industrial motion control practise. A step-by-step procedure is presented that gradually extends single-input single-output (SISO) loop-shaping to the multi-input multi-output (MIMO) situation. This step-by-step procedure consists of interaction analysis, decoupling, independent SISO design, sequential SISO design, and finally, norm-based MIMO design. Extreme ultraviolet is a key technology for next-generation lithography

    Control of flexible motion systems using frequency response data

    Get PDF

    Feedforward control for lightweight motion systems

    Get PDF

    Discrete Modeling and Sliding Mode Control of Piezoelectric Actuators

    Get PDF
    With the ability to generate fine displacements with a resolution down to sub-nanometers, piezoelectric actuators (PEAs) have found wide applications in various nano-positioning systems. However, existence of various effects in PEAs, such as hysteresis and creep, as well as dynamics can seriously degrade the PEA performance or even lead to instability. This raises a great need to model and control PEAs for improved performance, which have drawn remarkable attention in the literature. Sliding mode control (SMC) shows its potential to the control of PEA, by which the hysteresis and other nonlinear effects can be regard as disturbance to the dynamic model and thus rejected or compensated by its switching control. To implement SMC in digital computers, this research is aimed at developing novel discrete models and discrete SMC (DSMC)-based control schemes for PEAs, along with their experimental validation. The first part of this thesis concerns with the modeling and control of one-degree of freedom (DOF) PEA, which can be treated as a single-input-single-output (SISO) system. Specifically, a novel discrete model based on the concept of auto-regressive moving average (ARMA) was developed for the PEA hysteresis; and to compensate for the PEA hysteresis and improve its dynamics, an output tracking integrated discrete proportional-integral-derivative-based SMC (PID-SMC) was developed. On this basis, by making use of the availability of PEA hysteresis models, two control schemes, named “the discrete inversion feedforward based PID-SMC” and “the discrete disturbance observer (DOB)-based PID-SMC”, were further developed. To illustrate the effectiveness of the developed models and control schemes, experiments were designed and conducted on a commercially available one-DOF PEA, as compared with the existing ones. The second part of the thesis presents the extension of the developed modeling and control methods to multi-DOF PEAs. Given the fact that details with regard to the PEA internal configurations is not typically provided by the manufacturer, a state space model based on the black box system identification was developed for the three-DOF PEA. The developed model was then integrated in the output tracking based discrete PID-SMC, with its effectiveness verified through the experiments on a commercially available three-DOF PEA. The superiority of the proposed control method over the conventional PID controller was also experimentally investigated and demonstrated. Finally, by integrating with a DOB in the discrete PID-based SMC, a novel control scheme is resulted to compensate for the nonlinearities of the three-DOF PEA. To verify its effectiveness, the discrete DOB based PID-SMC was applied in the control experiments and compared with the existing SMC. The significance of this research lies in the development of the discrete models and PID-based SMC for PEAs, which is of great help to improve their performance. The successful application of the proposed method in the control of multi-DOF PEA allows the application of SMC to the control of complicated multi-inputs-multi-outputs (MIMO) systems without details regarding the internal configuration. Also, integration of the inversion based feedforward control and the DOB in the SMC design has been proven effective for the tracking control of PEAs

    Wafer Stage Motion Control:from Experiment Design to Robust Performance

    Get PDF

    Vibration isolation control of a contactless electromagnetic suspension system

    Get PDF
    • …
    corecore