41,320 research outputs found

    A Web 2.0 and OGC Standards Enabled Sensor Web Architecture for Global Earth Observing System of Systems

    Get PDF
    This paper will describe the progress of a 3 year research award from the NASA Earth Science Technology Office (ESTO) that began October 1, 2006, in response to a NASA Announcement of Research Opportunity on the topic of sensor webs. The key goal of this research is to prototype an interoperable sensor architecture that will enable interoperability between a heterogeneous set of space-based, Unmanned Aerial System (UAS)-based and ground based sensors. Among the key capabilities being pursued is the ability to automatically discover and task the sensors via the Internet and to automatically discover and assemble the necessary science processing algorithms into workflows in order to transform the sensor data into valuable science products. Our first set of sensor web demonstrations will prototype science products useful in managing wildfires and will use such assets as the Earth Observing 1 spacecraft, managed out of NASA/GSFC, a UASbased instrument, managed out of Ames and some automated ground weather stations, managed by the Forest Service. Also, we are collaborating with some of the other ESTO awardees to expand this demonstration and create synergy between our research efforts. Finally, we are making use of Open Geospatial Consortium (OGC) Sensor Web Enablement (SWE) suite of standards and some Web 2.0 capabilities to Beverage emerging technologies and standards. This research will demonstrate and validate a path for rapid, low cost sensor integration, which is not tied to a particular system, and thus be able to absorb new assets in an easily evolvable, coordinated manner. This in turn will help to facilitate the United States contribution to the Global Earth Observation System of Systems (GEOSS), as agreed by the U.S. and 60 other countries at the third Earth Observation Summit held in February of 2005

    IMBER – Research for marine sustainability: Synthesis and the way forward

    Get PDF
    The Integrated Marine Biogeochemistry and Ecosystem Research (IMBER) project aims at developing a comprehensive understanding of and accurate predictive capacity of ocean responses to accelerating global change and the consequent effects on the Earth system and human society. Understanding the changing ecology and biogeochemistry of marine ecosystems and their sensitivity and resilience to multiple drivers, pressures and stressors is critical to developing responses that will help reduce the vulnerability of marine-dependent human communities. This overview of the IMBER project provides a synthesis of project achievements and highlights the value of collaborative, interdisciplinary, integrated research approaches as developed and implemented through IMBER regional programs, working groups, project-wide activities, national contributions, and external partnerships. A perspective is provided on the way forward for the next 10 years of the IMBER project as the global environmental change research landscape evolves and as new areas of marine research emerge. IMBER science aims to foster collaborative, interdisciplinary and integrated research that addresses key ocean and social science issues and provides the understanding needed to propose innovative societal responses to changing marine systems

    Arctic in Rapid Transition (ART) : science plan

    Get PDF
    The Arctic is undergoing rapid transformations that have brought the Arctic Ocean to the top of international political agendas. Predicting future conditions of the Arctic Ocean system requires scientific knowledge of its present status as well as a process-based understanding of the mechanisms of change. The Arctic in Rapid Transition (ART) initiative is an integrative, international, interdisciplinary pan-Arctic program to study changes and feedbacks among the physical and biogeochemical components of the Arctic Ocean and their ultimate impacts on biological productivity. The goal of ART is to develop priorities for Arctic marine science over the next decade. Three overarching questions form the basis of the ART science plan: (1) How were past transitions in sea ice connected to energy flows, elemental cycling, biological diversity and productivity, and how do these compare to present and projected shifts? (2) How will biogeochemical cycling respond to transitions in terrestrial, gateway and shelf-to-basin fluxes? (3) How do Arctic Ocean organisms and ecosystems respond to environmental transitions including temperature, stratification, ice conditions, and pH? The integrated approach developed to answer the ART key scientific questions comprises: (a) process studies and observations to reveal mechanisms, (b) the establishment of links to existing monitoring programs, (c) the evaluation of geological records to extend time-series, and (d) the improvement of our modeling capabilities of climate-induced transitions. In order to develop an implementation plan for the ART initiative, an international and interdisciplinary workshop is currently planned to take place in Winnipeg, Canada in October 2010

    Going for the Green

    Get PDF
    This lesson will help students understand how primary production varies at different times of the year in the ocean over the southeastern U.S. continental shelf. Students will use satellite imagery to obtain information on chlorophyll concentration at selected locations in the Earth's oceans, explain the relationship between chlorophyll concentration and primary production, and describe seasonal variations in primary production off the southeastern coast of the United States. Students will also be able to describe the potential significance of observed variations in primary production to biological communities. Educational levels: Intermediate elementary, Middle school

    How motifs condition critical thresholds for tipping cascades in complex networks: Linking Micro- to Macro-scales

    Full text link
    In this study, we investigate how specific micro interaction structures (motifs) affect the occurrence of tipping cascades on networks of stylized tipping elements. We compare the properties of cascades in Erd\"os-R\'enyi networks and an exemplary moisture recycling network of the Amazon rainforest. Within these networks, decisive small-scale motifs are the feed forward loop, the secondary feed forward loop, the zero loop and the neighboring loop. Of all motifs, the feed forward loop motif stands out in tipping cascades since it decreases the critical coupling strength necessary to initiate a cascade more than the other motifs. We find that for this motif, the reduction of critical coupling strength is 11% less than the critical coupling of a pair of tipping elements. For highly connected networks, our analysis reveals that coupled feed forward loops coincide with a strong 90% decrease of the critical coupling strength. For the highly clustered moisture recycling network in the Amazon, we observe regions of very high motif occurrence for each of the four investigated motifs suggesting that these regions are more vulnerable. The occurrence of motifs is found to be one order of magnitude higher than in a random Erd\"os-R\'enyi network. This emphasizes the importance of local interaction structures for the emergence of global cascades and the stability of the network as a whole

    New VISTAs in Science Education

    Get PDF
    In the summer of 2012, a colleague and I attended the four-week Virginia Initiative for Science Teaching and Achievement (VISTA) Elementary Summer Science Institute where we were trained to conduct inquiry-based science teaching in a problem-based learning setting. We then implemented our training in our own academic classrooms by developing a Problem-Based Learning unit meeting the objectives of our Virginia standards-based science curriculum and selecting a topic with tics to our local community. Toward demonstrating that students, teachers, and educational systems stand to benefit from the implementation of this methodology, this article clarifies the following aspects: 1) outlines the problem, scenario, and process of developing a Problem-Based Leaming unit; 2) explains the delivery in the classroom; 3) analyzes ongoing formative and summative assessments; 4) and, discusses the influence on students, teachers, and instruction as a whole

    Renewing the framework for secondary science : spring 2008 subject leader development meeting : sessions 2, 3 and 4

    Get PDF
    • …
    corecore