1,196 research outputs found

    Prediction of potential evapotranspiration using temperature-based heuristic approaches

    Get PDF
    The potential or reference evapotranspiration (ET0) is considered as one of the fundamental variables for irrigation management, agricultural planning, and modeling different hydrological pr?Cesses, and therefore, its accurate prediction is highly essential. The study validates the feasibility of new temperature based heuristic models (i.e., group method of data handling neural network (GMDHNN), multivariate adaptive regression spline (MARS), and M5 model tree (M5Tree)) for estimating monthly ET0. The outcomes of the newly developed models are compared with empirical formulations including Hargreaves-Samani (HS), calibrated HS, and Stephens-Stewart (SS) models based on mean absolute error (MAE), root mean square error (RMSE), and Nash-Sutcliffe efficiency. Monthly maximum and minimum temperatures (Tmax and Tmin) observed at two stations in Turkey are utilized as inputs for model development. In the applications, three data division scenarios are utilized and the effect of periodicity component (PC) on models’ accuracies are also examined. By importing PC into the model inputs, the RMSE accuracy of GMDHNN, MARS, and M5Tree models increased by 1.4%, 8%, and 6% in one station, respectively. The GMDHNN model with periodic input provides a superior performance to the other alternatives in both stations. The recommended model reduced the average error of MARS, M5Tree, HS, CHS, and SS models with respect to RMSE by 3.7–6.4%, 10.7–3.9%, 76–75%, 10–35%, and 0.8–17% in estimating monthly ET0, respectively. The HS model provides the worst accuracy while the calibrated version significantly improves its accuracy. The GMDHNN, MARS, M5Tree, SS, and CHS models are also compared in estimating monthly mean ET0. The GMDHNN generally gave the best accuracy while the CHS provides considerably over/under-estimations. The study indicated that the only one data splitting scenario may mislead the modeler and for better validation of the heuristic methods, more data splitting scenarios should be applied

    Smart models to improve agrometeorological estimations and predictions

    Get PDF
    La población mundial, en continuo crecimiento, alcanzará de forma estimada los 9,7 mil millones de habitantes en el 2050. Este incremento, combinado con el aumento en los estándares de vida y la situación de emergencia climática (aumento de la temperatura, intensificación del ciclo del agua, etc.) nos enfrentan al enorme desafío de gestionar de forma sostenible los cada vez más escasos recursos disponibles. El sector agrícola tiene que afrontar retos tan importantes como la mejora en la gestión de los recursos naturales, la reducción de la degradación medioambiental o la seguridad alimentaria y nutricional. Todo ello condicionado por la escasez de agua y las condiciones de aridez: factores limitantes en la producción de cultivos. Para garantizar una producción agrícola sostenible bajo estas condiciones, es necesario que todas las decisiones que se tomen estén basadas en el conocimiento, la innovación y la digitalización de la agricultura de forma que se garantice la resiliencia de los agroecosistemas, especialmente en entornos áridos, semi-áridos y secos sub-húmedos en los que el déficit de agua es estructural. Por todo esto, el presente trabajo se centra en la mejora de la precisión de los actuales modelos agrometeorológicos, aplicando técnicas de inteligencia artificial. Estos modelos pueden proporcionar estimaciones y predicciones precisas de variables clave como la precipitación, la radiación solar y la evapotranspiración de referencia. A partir de ellas, es posible favorecer estrategias agrícolas más sostenibles, gracias a la posibilidad de reducir el consumo de agua y energía, por ejemplo. Además, se han reducido el número de mediciones requeridas como parámetros de entrada para estos modelos, haciéndolos más accesibles y aplicables en áreas rurales y países en desarrollo que no pueden permitirse el alto costo de la instalación, calibración y mantenimiento de estaciones meteorológicas automáticas completas. Este enfoque puede ayudar a proporcionar información valiosa a los técnicos, agricultores, gestores y responsables políticos de la planificación hídrica y agraria en zonas clave. Esta tesis doctoral ha desarrollado y validado nuevas metodologías basadas en inteligencia artificial que han ser vido para mejorar la precision de variables cruciales en al ámbito agrometeorológico: precipitación, radiación solar y evapotranspiración de referencia. En particular, se han modelado sistemas de predicción y rellenado de huecos de precipitación a diferentes escalas utilizando redes neuronales. También se han desarrollado modelos de estimación de radiación solar utilizando exclusivamente parámetros térmicos y validados en zonas con características climáticas similares a lugar de entrenamiento, sin necesidad de estar geográficamente en la misma región o país. Analógamente, se han desarrollado modelos de estimación y predicción de evapotranspiración de referencia a nivel local y regional utilizando también solamente datos de temperatura para todo el proceso: regionalización, entrenamiento y validación. Y finalmente, se ha creado una librería de Python de código abierto a nivel internacional (AgroML) que facilita el proceso de desarrollo y aplicación de modelos de inteligencia artificial, no solo enfocadas al sector agrometeorológico, sino también a cualquier modelo supervisado que mejore la toma de decisiones en otras áreas de interés.The world population, which is constantly growing, is estimated to reach 9.7 billion people in 2050. This increase, combined with the rise in living standards and the climate emergency situation (increase in temperature, intensification of the water cycle, etc.), presents us with the enormous challenge of managing increasingly scarce resources in a sustainable way. The agricultural sector must face important challenges such as improving natural resource management, reducing environmental degradation, and ensuring food and nutritional security. All of this is conditioned by water scarcity and aridity, limiting factors in crop production. To guarantee sustainable agricultural production under these conditions, it is necessary to based all the decision made on knowledge, innovation, and the digitization of agriculture to ensure the resilience of agroecosystems, especially in arid, semi-arid, and sub-humid dry environments where water deficit is structural. Therefore, this work focuses on improving the precision of current agrometeorological models by applying artificial intelligence techniques. These models can provide accurate estimates and predictions of key variables such as precipitation, solar radiation, and reference evapotranspiration. This way, it is possible to promote more sustainable agricultural strategies by reducing water and energy consumption, for example. In addition, the number of measurements required as input parameters for these models has been reduced, making them more accessible and applicable in rural areas and developing countries that cannot afford the high cost of installing, calibrating, and maintaining complete automatic weather stations. This approach can help provide valuable information to technicians, farmers, managers, and policy makers in key wáter and agricultural planning areas. This doctoral thesis has developed and validated new methodologies based on artificial intelligence that have been used to improve the precision of crucial variables in the agrometeorological field: precipitation, solar radiation, and reference evapotranspiration. Specifically, prediction systems and gap-filling models for precipitation at different scales have been modeled using neural networks. Models for estimating solar radiation using only thermal parameters have also been developed and validated in areas with similar climatic characteristics to the training location, without the need to be geographically in the same region or country. Similarly, models for estimating and predicting reference evapotranspiration at the local and regional level have been developed using only temperature data for the entire process: regionalization, training, and validation. Finally, an internationally open-source Python library (AgroML) has been created to facilitate the development and application of artificial intelligence models, not only focused on the agrometeorological sector but also on any supervised model that improves decision-making in other areas of interest

    Parametric expressions for the adjusted Hargreaves coefficient in Eastern Spain

    Full text link
    The application of simple empirical equations for estimating reference evapotranspiration (ETo) is the only alternative in many cases to robust approaches with high input requirements, especially at the local scale. In particular, temperature-based approaches present a high potential applicability, among others, because temperature might explain a high amount of ETo variability, and also because it can be measured easily and is one of the most available climatic inputs. One of the most well-known temperature-based approaches, the Hargreaves (HG) equation, requires a preliminary local calibration that is usually performed through an adjustment of the HG coefficient (AHC). Nevertheless, these calibrations are sitespecific, and cannot be extrapolated to other locations. So, they become useless in many situations, because they are derived from already available benchmarks based on more robust methods, which will be applied in practice. Therefore, the development of accurate equations for estimating AHC at local scale becomes a relevant task. This paper analyses the performance of calibrated and non-calibrated HG equations at 30 stations in Eastern Spain at daily, weekly, fortnightly and monthly scales. Moreover, multiple linear regression was applied for estimating AHC based on different inputs, and the resulting equations yielded higher performance accuracy than the non-calibrated HG estimates. The approach relying on the ratio mean temperature to temperature range did not provide suitable AHC estimations, and was highly improved by splitting it into two independent predictors. Temperature-based equations were improved by incorporating geographical inputs. Finally, the model relying on temperature and geographic inputs was further improved by incorporating wind speed, even just with simple qualitative information about wind category (e.g. poorly vs. highly windy). The accuracy of the calibrated and non-calibrated HG estimates increased for longer time steps (daily < weekly < fortnightly < monthly), although with a decreasing accuracy improvement rate. The variability of goodness-of-fit between AHC models was translated into lower variability of accuracy between the corresponding HG calibrated ETo estimates, because a single AHC was applied per station. The AHC fluctuations throughout the year suggest the convenience of using monthly or, at least, seasonal models. 2015 Elsevier B.V. All rights reserved.P. Marti acknowledges the financial support of the research grant Juan de la Cierva JCI-2012-13513 (Spanish Ministry of Economy and Competitiveness).Martí Pérez, PC.; Zarzo Castelló, M.; Vanderlinden, K.; Girona, J. (2015). Parametric expressions for the adjusted Hargreaves coefficient in Eastern Spain. Journal of Hydrology. 529(3):1713-1724. https://doi.org/10.1016/j.jhydrol.2015.07.054S17131724529

    Hydrometeorological Extremes and Its Local Impacts on Human-Environmental Systems

    Get PDF
    This Special Issue of Atmosphere focuses on hydrometeorological extremes and their local impacts on human–environment systems. Particularly, we accepted submissions on the topics of observational and model-based studies that could provide useful information for infrastructure design, decision making, and policy making to achieve our goals of enhancing the resilience of human–environment systems to climate change and increased variability

    Water availability and demand analysis in the Kabul River Basin, Afghanistan

    Get PDF
    Kabul River Basin (KRB), the most populated and highly heterogenic river basin of Afghanistan is the lifeline of millions of people in terms of supplying them with water for agricultural, municipal, and industrial as well as hydropower production purposes. Unfortunately, KRB is facing a multiplicity of governance, management and development relevant challenges for the last couple of decades. Detailed and reliable assessments of land use and land cover, water demand (for different sectors) as well as the available water resources are prerequisites for Integrated Water Resources Management across the basin. To achieve increased accuracy for water availability and demand analysis across the KRB, the study area was segregated into different hydrological and administrative units (provincial level, subbasin level etc.) in order to capture the heterogeneity driven by complex physiographic conditions (mainly due to huge elevation differences) and resulting in diverse cropping pattern at different reaches of the river basin. The innovative part of this study has been the concept of introducing spatial segregation of the large heterogenic river basin and using crop phenological information for evapotranspiration and land cover analysis respectively; it gave a distinct value to the output of this study. Phenologically tuned normalized difference vegetation indices (NDVI) of Aqua and Terra platforms with moderate resolution (250 m) proved to be very effective in the estimation of the land cover across the KRB with high accuracy. The phenology based segregated spatial analyses of the LULC of KRB with reference to 2003 (the base year of the study) highlighted the change in the ground coverage of main crops across the KRB e.g. wheat, barley, maize and rice. Based on the evaluation of the above results referring to the period 2003 to 2013, the rise in wheat ground coverage has been compensated by the decline in barley cultivation; maize and rice share has been almost consistent among the dominant cereals production in KRB. Upon spatial segregation, across the sub-basins (Alingar, Chak aw Logar, Ghorband aw Panjshir, Gomal, Kabul, Kunar and Shamal) Shamal, Kunar and Kabul showed highest actual evapotranspiration (ETa) throughout the study period of 2003 to 2013. The later three sub-basin host relatively large irrigated areas and production of two crops per year due to relatively favorable climatic and geographic conditions. Besides the agricultural water demand (ETa), water availability estimation through rainfall-runoff modelling by the use of the Soil and Water Assessment Tool (SWAT) has been very useful in data scarce regions like KRB. The application of the hydrological model using remote sensing products as input is the only effective choice in data scarce regions and exhibited results which are required by policy makers and investors for the strategic and sustainable planning and management of land and water resources

    Long-term-robust adaptation strategies for reservoir operation considering magnitude and timing of climate change: application to Diyala River Basin in Iraq

    Get PDF
    2020 Spring.Includes bibliographical references.Vulnerability assessment due to climate change impacts is of paramount importance for reservoir operation to achieve the goals of water resources management. This requires accurate forcing and basin data to build a valid hydrology model and assessment of the sensitivity of model results to the forcing data and uncertainty of model parameters. The first objective of this study is to construct the model and identify its sensitivity to the model parameters and uncertainty of the forcing data. The second objective is to develop a Parametric Regional Weather Generator (RP-WG) for use in areas with limited data availability that mimics observed characteristics. The third objective is to propose and assess a decision-making framework to evaluate pre-specified reservoir operation plans, determine the theoretical optimal plan, and identify the anticipated best timeframe for implementation by considering all possible climate scenarios. To construct the model, the Variable Infiltration Capacity (VIC) platform was selected to simulate the characteristics of the Diyala River Basin (DRB) in Iraq. Several methods were used to obtain the forcing data and they were validated using the Kling–Gupta efficiency (KGE) metric. Variables considered include precipitation, temperature, and wind speed. Model sensitivity and uncertainty were examined by the Generalized Likelihood Uncertainty Estimation (GLUE) and the Differential Evolution Adaptive Metropolis (DREAM) techniques. The proposed RP-WG was based on (1) a First-order, Two-state Markov Chain to simulate precipitation occurrences; (2) use of Wilks' technique to produce correlated weather variables at multiple sites with conservation of spatial, temporal, and cross correlations; and (3) the capability to produce a wide range of synthetic climate scenarios. A probabilistic decision-making framework under nonstationary hydroclimatic conditions was proposed with four stages: (1) climate exposure generation (2) supply scenario calculations, (3) demand scenario calculations, and (4) multi-objective performance assessment. The framework incorporated a new metric called Maximum Allowable Time to examine the timeframe for robust adaptations. Three synthetic pre-suggested plans were examined to avoid undesirable long-term climate change impacts, while the theoretical-optimal plan was identified by the Non-dominated Sorting Genetic Algorithm II. The multiplicative random cascade and Schaake Shuffle techniques were used to determine daily precipitation data, while a set of correction equations was developed to adjust the daily temperature and wind speed. The depth of the second soil layer caused most sensitivity in the VIC model, and the uncertainty intervals demonstrated the validity of the VIC model to generate reasonable forecasts. The daily VIC outputs were calibrated with a KGE average of 0.743, and they were free from non-normality, heteroscedasticity, and auto-correlation. Results of the PR-WG evaluation show that it exhibited high values of the KGE, preserved the statistical properties of the observed variables, and conserved the spatial, temporal, and cross correlations among the weather variables at all sites. Finally, risk assessment results show that current operational rules are robust for flood protection but vulnerable in drought periods. This implies that the project managers should pay special attention to the drought and spur new technologies to counteract. Precipitation changes were dominant in flood and drought management, and temperature and wind speed changes effects were significant during drought. The results demonstrated the framework's effectiveness to quantify detrimental climate change effects in magnitude and timing with the ability to provide a long-term guide (and timeframe) to avert the negative impacts

    Multi-scale actual evapotranspiration mapping in South America with remote sensing data and the geeSEBAL model

    Get PDF
    O monitoramento preciso da evapotranspiração (ET) é crucial para gerenciar os recursos hídricos, garantir a segurança alimentar e avaliar os impactos das mudanças climáticas. Modelos de Balanço de Energia da Superfície (SEB) que usam dados de sensoriamento remoto são os mais confiáveis para estimar a ET, mas muitas vezes são difíceis de aplicar em grande escala devido ao longo tempo de processamento, necessidade de calibração local, entre outros obstáculos. Esta tese tem como foco a melhoria do geeSEBAL, uma implementação do modelo Surface Energy Balance Algorithm for Land (SEBAL) na plataforma Google Earth Engine (GEE), adaptando-o para modelagem em escala continental, usando imagens do Moderate Resolution Imaging Spectroradiometer (MODIS). O novo modelo, chamado geeSEBALMODIS, foi usado para gerar uma série temporal de ET a cada 8 dias para a América do Sul com pixels de 500 m. Estudos de validação mostram que o geeSEBAL-MODIS é mais preciso do que outros produtos globais de ET, com uma redução do erro de 13% na escala de campo e 30% na escala de bacia hidrográfica. O conjunto de dados está disponível para o público e pode ser usado para monitorar tanto mudanças climáticas em grande escala quanto as variações locais de ET relacionadas às atividades humanas. A análise de tendências mostra um aumento de 8,4% na ET sobre a América do Sul, associado ao aumento da demanda atmosférica, e à redução da precipitação e disponibilidade de água. Esses resultados destacam a importância de informações precisas sobre os processos do ciclo hidrológico para auxiliar no planejamento e gerenciamento dos recursos hídricos em um cenário de maior escassez. Nesse contexto, projetos como o OpenET, que fornece dados confiáveis e de alta resolução espacial de ET nos Estados Unidos, são cruciais para monitorar o consumo de água e auxiliar no desenvolvimento sustentável. Este trabalho também apresenta uma reprodução parcial do processo do OpenET para a intercomparação de modelos de sensoriamento remoto com dados de torres de fluxo, usando torres micrometeorológicas na América do Sul. Os resultados são promissores e abrem caminho para a expansão do OpenET além dos Estados Unidos e em direção a uma aplicação global.Accurately monitoring evapotranspiration (ET) is crucial for managing water resources, ensuring food security, and assessing the impacts of climate change. Surface Energy Balance (SEB) models that use remote sensing data are the most reliable for estimating ET, but they are often challenging to apply on a large scale due to long processing times, and local calibration requirements, among other obstacles. This dissertation focuses on improving geeSEBAL, an implementation of the Surface Energy Balance Algorithm for Land (SEBAL) model on the Google Earth Engine (GEE) platform, by adapting it for continental-scale modeling using Moderate Resolution Imaging Spectroradiometer (MODIS) images. The new model, called geeSEBAL-MODIS, was used to generate a temporal series of ET every 8 days for South America with pixels of 500 m. Validation studies show that geeSEBAL-MODIS is more accurate than other global ET products, with a reduction in error of 13% at the field scale and 30% at the basin scale. The dataset is publicly available and can be used to monitor both largescale climate change and local ET variations related to human activities. Trend analysis shows an 8.4% increase in ET over South America, associated with increased atmospheric demand, and reductions in precipitation and water availability. These findings underscore the importance of accurate information on hydrological cycle processes to assist in planning and managing water resources in a scenario of greater scarcity. In this context, projects like OpenET, which provides reliable and high spatial-resolution ET data in the United States, are crucial for monitoring water consumption and aiding in sustainable development. This work also presents a partial reproduction of the OpenET process for intercomparing remote sensing models with flux tower data, using micrometeorological towers in South America. The results are promising and pave the way for expanding OpenET beyond the United States and toward global application

    Long lead time drought forecasting using lagged climate variables and a stacked long short-term memory model.

    Full text link
    Drought forecasting with a long lead time is essential for early warning systems and risk management strategies. The use of machine learning algorithms has been proven to be beneficial in forecasting droughts. However, forecasting at long lead times remains a challenge due to the effects of climate change and the complexities involved in drought assessment. The rise of deep learning techniques can solve this issue, and the present work aims to use a stacked long short-term memory (LSTM) architecture to forecast a commonly used drought measure, namely, the Standard Precipitation Evaporation Index. The model was then applied to the New South Wales region of Australia, with hydrometeorological and climatic variables as predictors. The multivariate interpolated grid of the Climatic Research Unit was used to compute the index at monthly scales, with meteorological variables as predictors. The architecture was trained using data from the period of 1901-2000 and tested on data from the period of 2001-2018. The results were then forecasted at lead times ranging from 1 month to 12 months. The forecasted results were analysed in terms of drought characteristics, such as drought intensity, drought onset, spatial extent and number of drought months, to elucidate how these characteristics improve the understanding of drought forecasting. The drought intensity forecasting capability of the model used two statistical metrics, namely, the coefficient of determination (R2) and root-mean-square error. The variation in the number of drought months was examined using the threat score technique. The results of this study showed that the stacked LSTM model can forecast effectively at short-term and long-term lead times. Such findings will be essential for government agencies and can be further tested to understand the forecasting capability of the presented architecture at shorter temporal scales, which can range from days to weeks
    corecore