57,941 research outputs found

    A Statistical Perspective on Randomized Sketching for Ordinary Least-Squares

    Full text link
    We consider statistical as well as algorithmic aspects of solving large-scale least-squares (LS) problems using randomized sketching algorithms. For a LS problem with input data (X,Y)∈Rn×p×Rn(X, Y) \in \mathbb{R}^{n \times p} \times \mathbb{R}^n, sketching algorithms use a sketching matrix, S∈Rr×nS\in\mathbb{R}^{r \times n} with r≪nr \ll n. Then, rather than solving the LS problem using the full data (X,Y)(X,Y), sketching algorithms solve the LS problem using only the sketched data (SX,SY)(SX, SY). Prior work has typically adopted an algorithmic perspective, in that it has made no statistical assumptions on the input XX and YY, and instead it has been assumed that the data (X,Y)(X,Y) are fixed and worst-case (WC). Prior results show that, when using sketching matrices such as random projections and leverage-score sampling algorithms, with p<r≪np < r \ll n, the WC error is the same as solving the original problem, up to a small constant. From a statistical perspective, we typically consider the mean-squared error performance of randomized sketching algorithms, when data (X,Y)(X, Y) are generated according to a statistical model Y=Xβ+ϵY = X \beta + \epsilon, where ϵ\epsilon is a noise process. We provide a rigorous comparison of both perspectives leading to insights on how they differ. To do this, we first develop a framework for assessing algorithmic and statistical aspects of randomized sketching methods. We then consider the statistical prediction efficiency (PE) and the statistical residual efficiency (RE) of the sketched LS estimator; and we use our framework to provide upper bounds for several types of random projection and random sampling sketching algorithms. Among other results, we show that the RE can be upper bounded when p<r≪np < r \ll n while the PE typically requires the sample size rr to be substantially larger. Lower bounds developed in subsequent results show that our upper bounds on PE can not be improved.Comment: 27 pages, 5 figure

    Spatial Random Sampling: A Structure-Preserving Data Sketching Tool

    Full text link
    Random column sampling is not guaranteed to yield data sketches that preserve the underlying structures of the data and may not sample sufficiently from less-populated data clusters. Also, adaptive sampling can often provide accurate low rank approximations, yet may fall short of producing descriptive data sketches, especially when the cluster centers are linearly dependent. Motivated by that, this paper introduces a novel randomized column sampling tool dubbed Spatial Random Sampling (SRS), in which data points are sampled based on their proximity to randomly sampled points on the unit sphere. The most compelling feature of SRS is that the corresponding probability of sampling from a given data cluster is proportional to the surface area the cluster occupies on the unit sphere, independently from the size of the cluster population. Although it is fully randomized, SRS is shown to provide descriptive and balanced data representations. The proposed idea addresses a pressing need in data science and holds potential to inspire many novel approaches for analysis of big data

    OverSketch: Approximate Matrix Multiplication for the Cloud

    Full text link
    We propose OverSketch, an approximate algorithm for distributed matrix multiplication in serverless computing. OverSketch leverages ideas from matrix sketching and high-performance computing to enable cost-efficient multiplication that is resilient to faults and straggling nodes pervasive in low-cost serverless architectures. We establish statistical guarantees on the accuracy of OverSketch and empirically validate our results by solving a large-scale linear program using interior-point methods and demonstrate a 34% reduction in compute time on AWS Lambda.Comment: Published in Proc. IEEE Big Data 2018. Updated version provides details of distributed sketching and highlights other advantages of OverSketc

    Randomized Robust Subspace Recovery for High Dimensional Data Matrices

    Full text link
    This paper explores and analyzes two randomized designs for robust Principal Component Analysis (PCA) employing low-dimensional data sketching. In one design, a data sketch is constructed using random column sampling followed by low dimensional embedding, while in the other, sketching is based on random column and row sampling. Both designs are shown to bring about substantial savings in complexity and memory requirements for robust subspace learning over conventional approaches that use the full scale data. A characterization of the sample and computational complexity of both designs is derived in the context of two distinct outlier models, namely, sparse and independent outlier models. The proposed randomized approach can provably recover the correct subspace with computational and sample complexity that are almost independent of the size of the data. The results of the mathematical analysis are confirmed through numerical simulations using both synthetic and real data
    • …
    corecore