4,656 research outputs found

    An Improved Scheme for Interest Mining Based on a Reconfiguration of the Peer-to-Peer Overlay

    Get PDF
    Tan et al. proposed a scheme to improve the quality of a file search in unstructured Peer-to-Peer systems by focusing on the similarity of interest of the participating peers. Although it certainly improves the cost/performance ratio of a simple flooding-based scheme used in conventional systems, the Tan's method has a serious drawback such that a query cannot reach a target peer if a requesting peer is not connected with the target peer through a path consisting of peers to have similar interest to the given query. In order to overcome such drawback of the Tan's method, we propose a scheme to reconfigure the underlying network in such a way that a requesting peer has a neighbor interested in the given query, before transmitting a query to its neighbors. The performance of the proposed scheme is evaluated by simulation. The result of simulation indicates that it certainly overcomes the drawback of the Tan's method

    Porqpine: a peer-to-peer search engine

    Get PDF
    In this paper, we present a fully distributed and collaborative search engine for web pages: Porqpine. This system uses a novel query-based model and collaborative filtering techniques in order to obtain user-customized results. All knowledge about users and profiles is stored in each user node?s application. Overall the system is a multi-agent system that runs on the computers of the user community. The nodes interact in a peer-to-peer fashion in order to create a real distributed search engine where information is completely distributed among all the nodes in the network. Moreover, the system preserves the privacy of user queries and results by maintaining the anonymity of the queries? consumers and results? producers. The knowledge required by the system to work is implicitly caught through the monitoring of users actions, not only within the system?s interface but also within one of the most popular web browsers. Thus, users are not required to explicitly feed knowledge about their interests into the system since this process is done automatically. In this manner, users obtain the benefits of a personalized search engine just by installing the application on their computer. Porqpine does not intend to shun completely conventional centralized search engines but to complement them by issuing more accurate and personalized results.Postprint (published version

    Distributed top-k aggregation queries at large

    Get PDF
    Top-k query processing is a fundamental building block for efficient ranking in a large number of applications. Efficiency is a central issue, especially for distributed settings, when the data is spread across different nodes in a network. This paper introduces novel optimization methods for top-k aggregation queries in such distributed environments. The optimizations can be applied to all algorithms that fall into the frameworks of the prior TPUT and KLEE methods. The optimizations address three degrees of freedom: 1) hierarchically grouping input lists into top-k operator trees and optimizing the tree structure, 2) computing data-adaptive scan depths for different input sources, and 3) data-adaptive sampling of a small subset of input sources in scenarios with hundreds or thousands of query-relevant network nodes. All optimizations are based on a statistical cost model that utilizes local synopses, e.g., in the form of histograms, efficiently computed convolutions, and estimators based on order statistics. The paper presents comprehensive experiments, with three different real-life datasets and using the ns-2 network simulator for a packet-level simulation of a large Internet-style network

    Topology Discovery of Sparse Random Graphs With Few Participants

    Get PDF
    We consider the task of topology discovery of sparse random graphs using end-to-end random measurements (e.g., delay) between a subset of nodes, referred to as the participants. The rest of the nodes are hidden, and do not provide any information for topology discovery. We consider topology discovery under two routing models: (a) the participants exchange messages along the shortest paths and obtain end-to-end measurements, and (b) additionally, the participants exchange messages along the second shortest path. For scenario (a), our proposed algorithm results in a sub-linear edit-distance guarantee using a sub-linear number of uniformly selected participants. For scenario (b), we obtain a much stronger result, and show that we can achieve consistent reconstruction when a sub-linear number of uniformly selected nodes participate. This implies that accurate discovery of sparse random graphs is tractable using an extremely small number of participants. We finally obtain a lower bound on the number of participants required by any algorithm to reconstruct the original random graph up to a given edit distance. We also demonstrate that while consistent discovery is tractable for sparse random graphs using a small number of participants, in general, there are graphs which cannot be discovered by any algorithm even with a significant number of participants, and with the availability of end-to-end information along all the paths between the participants.Comment: A shorter version appears in ACM SIGMETRICS 2011. This version is scheduled to appear in J. on Random Structures and Algorithm

    OnionBots: Subverting Privacy Infrastructure for Cyber Attacks

    Full text link
    Over the last decade botnets survived by adopting a sequence of increasingly sophisticated strategies to evade detection and take overs, and to monetize their infrastructure. At the same time, the success of privacy infrastructures such as Tor opened the door to illegal activities, including botnets, ransomware, and a marketplace for drugs and contraband. We contend that the next waves of botnets will extensively subvert privacy infrastructure and cryptographic mechanisms. In this work we propose to preemptively investigate the design and mitigation of such botnets. We first, introduce OnionBots, what we believe will be the next generation of resilient, stealthy botnets. OnionBots use privacy infrastructures for cyber attacks by completely decoupling their operation from the infected host IP address and by carrying traffic that does not leak information about its source, destination, and nature. Such bots live symbiotically within the privacy infrastructures to evade detection, measurement, scale estimation, observation, and in general all IP-based current mitigation techniques. Furthermore, we show that with an adequate self-healing network maintenance scheme, that is simple to implement, OnionBots achieve a low diameter and a low degree and are robust to partitioning under node deletions. We developed a mitigation technique, called SOAP, that neutralizes the nodes of the basic OnionBots. We also outline and discuss a set of techniques that can enable subsequent waves of Super OnionBots. In light of the potential of such botnets, we believe that the research community should proactively develop detection and mitigation methods to thwart OnionBots, potentially making adjustments to privacy infrastructure.Comment: 12 pages, 8 figure

    Decentralization in Bitcoin and Ethereum Networks

    Full text link
    Blockchain-based cryptocurrencies have demonstrated how to securely implement traditionally centralized systems, such as currencies, in a decentralized fashion. However, there have been few measurement studies on the level of decentralization they achieve in practice. We present a measurement study on various decentralization metrics of two of the leading cryptocurrencies with the largest market capitalization and user base, Bitcoin and Ethereum. We investigate the extent of decentralization by measuring the network resources of nodes and the interconnection among them, the protocol requirements affecting the operation of nodes, and the robustness of the two systems against attacks. In particular, we adapted existing internet measurement techniques and used the Falcon Relay Network as a novel measurement tool to obtain our data. We discovered that neither Bitcoin nor Ethereum has strictly better properties than the other. We also provide concrete suggestions for improving both systems.Comment: Financial Cryptography and Data Security 201
    corecore