4,045 research outputs found

    Class-based storage location assignment : an overview of the literature

    Get PDF
    Storage, per se, is not only an important process in a warehouse, also it has the greatest influence on the most expensive one, i.e., order picking. This study aims to give a literature overview on class-based storage location assignment (CBSLAP). In this paper, we discuss storage policies and present a classification of storage location assignment problem. Next, different configuration of classes are presented. We identify the research gaps in the literature and conclude with promising future research directions

    Quick Response Practices at the Warehouse of Ankor

    Get PDF
    In the warehouse of Ankor, a wholesaler of tools and garden equipment, various problems concerning the storage and retrieval of products arise. For example, heavy products have to be retrieved prior to light products to prevent damage. Furthermore, the layout of the warehouse differs from the layout generally assumed in literature. The goal of this research was to determine storage locations for the products and a routing method to obtain sequences in which products are to be retrieved from their locations. It is shown that despite deviations from the "normal" case, similar savings in route length can be obtained by adapting existing solution techniques. Total labor savings are far less than expected on basis of assumptions made in literature. With a minimum of adaptations to the current situation the average route length can be decreased by 30 %. There is no need for complex techniques.storage;warehousing;optimization;case study;routing

    Design and Control of Warehouse Order Picking: a literature review

    Get PDF
    Order picking has long been identified as the most labour-intensive and costly activity for almost every warehouse; the cost of order picking is estimated to be as much as 55% of the total warehouse operating expense. Any underperformance in order picking can lead to unsatisfactory service and high operational cost for its warehouse, and consequently for the whole supply chain. In order to operate efficiently, the orderpicking process needs to be robustly designed and optimally controlled. This paper gives a literature overview on typical decision problems in design and control of manual order-picking processes. We focus on optimal (internal) layout design, storage assignment methods, routing methods, order batching and zoning. The research in this area has grown rapidly recently. Still, combinations of the above areas have hardly been explored. Order-picking system developments in practice lead to promising new research directions.Order picking;Logistics;Warehouse Management

    Order Batching in Order Picking Warehouses: A Survey of Solution Approaches

    Get PDF
    Order picking is a warehouse function dealing with the retrieval of articles from their storage location in order to satisfy a given demand specified by customer orders. Of all warehouse operations, order picking is considered to include the most cost-intensive ones. Even though there have been different attempts to automate the picking process, manual order picking systems are still prevalent in practice. This article will focus on order batching, one of the main planning issues in order picking systems. Order Batching has been proven to be pivotal for the efficiency of order picking operations. With respect to the availability of information about the customer orders, order batching can be distinguished into static batching and dynamic batching. Improved order batching reduces the total picking time required to collect the requested articles. According to experience from practice, this can result in significant savings of labor cost and into a reduction of the customer order\u27s delivery lead time.The aim of this contribution is to provide comprehensive insights into order batching by giving a detailed state-of-the-art overview of the different solution approaches which have been suggested in the literature. Corresponding to the available publications, the emphasis will be on static order batching.In addition to this, the paper will also review the existing literature for variants and extensions of static order batching (e.g. due dates, alternative objective functions). Furthermore, solution approaches for dynamic order batching problems (like time window batching) will be presented

    Correlated storage assignment approach in warehouses: A systematic literature review

    Get PDF
    Purpose: Correlation-based storage assignment approach has been intensively explored during the last three decades to improve the order picking efficiency. The purpose of this study is to present a comprehensive assessment of the literature about the state-of-the-art techniques used to solve correlated storage location assignment problems (CSLAP). Design/methodology/approach: A systematic literature review has been carried out based on content analysis to identify, select, analyze, and critically summarize all the studies available on CSLAP. This study begins with the selection of relevant keywords, and narrowing down the selected papers based on various criteria. Findings: Most correlated storage assignment problems are expressed as NP-hard integer programming models. The studies have revealed that CSLAP is evaluated with many approaches. The solution methods can be mainly categorized into heuristic approach, meta-heuristic approach, and data mining approach. With the advancement of computing power, researchers have taken up the challenge of solving more complex storage assignment problems. Furthermore, applications of the models developed are being tested on actual industry data to comprehend the efficiency of the models. Practical implications: The content of this article can be used as a guide to help practitioners and researchers to become adequately knowledgeable on CSLAP for their future work. Originality/value: Since there has been no recent state-of-the-art evaluation of CSLAP, this paper fills that need by systematizing and unifying recent work and identifying future research scopes

    Metaheuristics for the Order Batching Problem in Manual Order Picking Systems

    Get PDF
    In manual order picking systems, order pickers walk or drive through a distribution warehouse in order to collect items which are requested by (internal or external) customers. In order to perform these operations effciently, it is usually required that customer orders are combined into (more substantial) picking orders of limited size. The Order Batching Problem considered in this paper deals with the question of how a given set of customer orders should be combined such that the total length of all tours is minimized which are necessary to collect all items. The authors introduce two metaheuristic approaches for the solution of this problem; the rst one is based on Iterated Local Search, the second one on Ant Colony Optimization. In a series of extensive numerical experiments, the newly developed approaches are benchmarked against classic solution methods. It is demonstrated that the proposed methods are not only superior to existing methods, but provide solutions which may allow for operating distribution warehouses signicantly more effcient.Warehouse Management, Order Picking, Order Batching, Iterated Local Search, Ant Colony Optimization

    Algorithms for On-line Order Batching in an Order-Picking Warehouse

    Get PDF
    In manual order picking systems, order pickers walk or ride through a distribution warehouse in order to collect items required by (internal or external) customers. Order batching consists of combining these – indivisible – customer orders into picking orders. With respect to order batching, two problem types can be distinguished: In off-line (static) batching all customer orders are known in advance. In on-line (dynamic) batching customer orders become available dynamically over time. This report considers an on-line order batching problem in which the total completion time of all customer orders arriving within a certain time period has to be minimized. The author shows how heuristic approaches for the off-line order batching can be modified in order to deal with the on-line situation. A competitive analysis shows that every on-line algorithm for this problem is at least 2-competitive. Moreover, this bound is tight if an optimal batching algorithm is used. The proposed algorithms are evaluated in a series of extensive numerical experiments. It is demonstrated that the choice of an appropriate batching method can lead to a substantial reduction of the completion time of a set of customer orders.Warehouse Management, Order Picking, Order Batching, On-line Optimization

    Quick Response Practices at the Warehouse of Ankor

    Get PDF
    In the warehouse of Ankor, a wholesaler of tools and garden equipment, various problems concerning the storage and retrieval of products arise. For example, heavy products have to be retrieved prior to light products to prevent damage. Furthermore, the layout of the warehouse differs from the layout generally assumed in literature. The goal of this research was to determine storage locations for the products and a routing method to obtain sequences in which products are to be retrieved from their locations. It is shown that despite deviations from the "normal" case, similar savings in route length can be obtained by adapting existing solution techniques. Total labor savings are far less than expected on basis of assumptions made in literature. With a minimum of adaptations to the current situation the average route length can be decreased by 30 %. There is no need for complex techniques

    Design and Control of Warehouse Order Picking: a literature review

    Get PDF
    Order picking has long been identified as the most labour-intensive and costly activity for almost every warehouse; the cost of order picking is estimated to be as much as 55% of the total warehouse operating expense. Any underperformance in order picking can lead to unsatisfactory service and high operational cost for its warehouse, and consequently for the whole supply chain. In order to operate efficiently, the orderpicking process needs to be robustly designed and optimally controlled. This paper gives a literature overview on typical decision problems in design and control of manual order-picking processes. We focus on optimal (internal) layout design, storage assignment methods, routing methods, order batching and zoning. The research in this area has grown rapidly recently. Still, combinations of the above areas have hardly been explored. Order-picking system developments in practice lead to promising new research directions
    corecore