437 research outputs found

    Application of optimization techniques to vehicle design: A review

    Get PDF
    The work that has been done in the last decade or so in the application of optimization techniques to vehicle design is discussed. Much of the work reviewed deals with the design of body or suspension (chassis) components for reduced weight. Also reviewed are studies dealing with system optimization problems for improved functional performance, such as ride or handling. In reviewing the work on the use of optimization techniques, one notes the transition from the rare mention of the methods in the 70's to an increased effort in the early 80's. Efficient and convenient optimization and analysis tools still need to be developed so that they can be regularly applied in the early design stage of the vehicle development cycle to be most effective. Based on the reported applications, an attempt is made to assess the potential for automotive application of optimization techniques. The major issue involved remains the creation of quantifiable means of analysis to be used in vehicle design. The conventional process of vehicle design still contains much experience-based input because it has not yet proven possible to quantify all important constraints. This restraint on the part of the analysis will continue to be a major limiting factor in application of optimization to vehicle design

    Mathematical Modelling and Analysis of Vehicle Frontal Crash using Lumped Parameters Models

    Get PDF
    A full-scale crash test is conventionally used for vehicle crashworthiness analysis. However, this approach is expensive and time-consuming. Vehicle crash reconstructions using different numerical modelling approaches can predict vehicle behavior and reduce the need for multiple full-scale crash tests, thus research on the crash reconstruction has received a great attention in the last few decades. Among modelling approaches, lumped parameters models (LPM) and finite element models (FEM) are commonly used in the vehicle crash reconstruction. This thesis focuses on developing and improving the LPM for vehicle frontal crash analysis. The study aims at reconstructing crash scenarios for vehicle-to-barrier (VTB), vehicleoccupant (V-Occ), and vehicle-to-vehicle (VTV), respectively. In this study, a single mass-spring-damper (MSD) is used to simulate a vehicle to-barrier or a wall. A double MSD is used to model the response of the chassis and passenger compartment in a frontal crash, a vehicle-occupant, and a vehicle-tovehicle, respectively. A curve fitting, state-space, and genetic algorithm are used to estimate parameters of the model for reconstructing the vehicle crash kinematics. Further, the piecewise LPM is developed to mimic the crash characteristics for VTB, VO, and VTV crash scenarios, and its predictive capability is compared with the explicit FEM. Within the framework, the advantages of the proposed methods are explained in detail, and suggested solutions are presented to address the limitations in the study.publishedVersio

    Development Of An Elderly Female Torso Finite Element Model For Restraint System Research And Development Applications

    Get PDF
    Elderly females are found to be one of the most vulnerable segments of population during motor vehicle crashes and their population is increasing in the coming decades. Current design of restraint systems as well as other passive safety measures are designed based on anthropomorphic details of younger population. Developing another dummy representing elderly female population is a costly effort, while a finite element (FE) model of elderly female with similar anthropomorphic details and age- and gender-specific material properties can be a better alternative solution. The current research focuses on the development of a FE model of an elderly female torso, because a thorough search through literature has identified thorax as the most severely injured body part for elderly females due to rib fractures in motor vehicle induced trauma. Therefore, data from previously conducted rib bending experiments on 278 rib specimens taken from antero-lateral portion of 82 cadavers were analyzed to see the effect of age, gender, height, and weight on the rib bio-mechanical response parameters such as the maximum bending moment (MBM), maximum bending angle (Ćźmax), slope of moment-angle curve (SMT), and on average cortical thickness value. It was found that, in comparison to males, females had significantly lower values for the MBM (p = 0.000), SMT (p = 0.000), and average cortical-bone thickness (p = 0.001). Samples of ribs taken from elderly specimens failed at lower values of MBM than those from younger specimens, and had lower SMT, both in males and females (p \u3c 0.05). The generalized estimating equations were developed for each bio-mechanical response parameter in terms of dependent variables, namely the age, gender, height, and weight. Further, the material model parameters for elderly female rib specimen with constant cortical bone thickness were optimized, which in turn were used in developed whole body FE model. The cortical thickness variations in different sections (anterior, antero-lateral, lateral, posteo-lateral, and posterior) of whole rib were also assigned based on those reported in the literature. The model predicted peak responses as well as the fracture locations of the ribs were analyzed against whole rib bending tests with favorable result. Once the response of single whole rib was validated, further the response of elderly female whole rib cage was validated against data reported from frontal pendulum impacts at different speeds as well as data reported for belt loading. The validations results showed that the developed FE model can represent the overall behavior of elderly female during the type of loading as experienced in motor vehicle crashes

    VEACON: A Vehicular Accident Ontology designed to improve safety on the roads

    Full text link
    [EN] Vehicles are nowadays provided with a variety of new sensors capable of gathering information about themselves and from their surroundings. In a near future, these vehicles will also be capable of sharing all the harvested information, with the surrounding environment and among nearby vehicles over smart wireless links. They will also be able to connect with emergency services in case of accidents. Hence, distributed applications based on Vehicular Networks (VNs) will need to agree on a `common understanding¿ of context for interoperability, and, therefore, it is necessary to create a standard structure which enables data interoperability among all the different entities involved in transportation systems. In this paper, we focus on traffic safety applications; specifically, we present the VEhicular ACcident ONtology (VEACON) designed to improve traffic safety. Our ontology combines the information collected when an accident occurs, and the data available in the General Estimates System (GES) accidents database. We assess the reliability of our proposal using both realistic crash tests, held in the facilities of Applus+ IDIADA in Tarragona, Spain, and Vehicular Network simulations, based on the ns-2 simulation tool. Experimental results highlight that both nearby vehicles and infrastructure elements (RSUs) are correctly notified about an accident in just a few seconds, increasing the emergency services notification effectiveness. (c) 2012 Elsevier Ltd. All rights reserved.This work was partially supported by the Ministerio de Ciencia e Innovacion, Spain, under Grant TIN2011-27543-C03-01.Barrachina, J.; Garrido, P.; Fogue, M.; Martínez, FJ.; Cano Escribá, JC.; Tavares De Araujo Cesariny Calafate, CM.; Manzoni, P. (2012). VEACON: A Vehicular Accident Ontology designed to improve safety on the roads. Journal of Network and Computer Applications. 35(6):1891-1900. https://doi.org/10.1016/j.jnca.2012.07.013S1891190035

    An Application of Data Analytics to Outcomes of Missouri Motor Vehicle Crashes

    Get PDF
    Motor vehicle crashes are a leading cause of death in the United States, cost Americans $277 billion annually, and generate serious psychological burdens. As a result, extensive vehicle safety research focusing on the explanatory factors of crash severity is undertaken using a wide array of methodological techniques including traditional statistical models and contemporary data mining approaches. This study advances the methodological frontier of crash severity research by completing an empirical investigation that compares the performance of popular, longstanding techniques of multinomial logit and ordinal probit models with more recent methods of decision tree and artificial neural network models. To further the investigation of the benefits of data analytics, individual models are combined into model ensembles using three popular combinatory techniques. The models are estimated using 2002 to 2012 crash data from the Missouri State Highway Patrol Traffic Division - Statewide Traffic Accident Records System database, and variables examined include various driver characteristics, temporal factors, weather conditions, road characteristics, crash type, crash location, and injury severity levels. The accuracy and discriminatory power of explaining crash severity outcomes among all methods are compared using classification tables, lift charts, ROC curves, and AUC values. The CHAID decision tree model is found to have the greatest accuracy and discriminatory power relative to all evaluated modeling approaches. The modeling reveals that the presence of alcohol, driving at speeds that exceed the limit, failing to yield, driving on the wrong side of the road, violating a stop sign or signal, and driving while physically impaired lead to a large number of fatalities each year. Yet, the effect of these factors on the probability of a severe outcome is dependent upon other variables, including number of occupants involved in the crash, speed limit, lighting condition, and age of the driver. The CHAID decision tree is used in conjunction with prior literature and the current Missouri rules of the road to provide better formulated driving policies. This study concludes that policy makers should consider the interaction of conditions and driver related contributing factors when crafting future legislation or proposing modifications in driving statues

    Analysis and Prediction of Deforming 3D Shapes using Oriented Bounding Boxes and LSTM Autoencoders

    Full text link
    For sequences of complex 3D shapes in time we present a general approach to detect patterns for their analysis and to predict the deformation by making use of structural components of the complex shape. We incorporate long short-term memory (LSTM) layers into an autoencoder to create low dimensional representations that allow the detection of patterns in the data and additionally detect the temporal dynamics in the deformation behavior. This is achieved with two decoders, one for reconstruction and one for prediction of future time steps of the sequence. In a preprocessing step the components of the studied object are converted to oriented bounding boxes which capture the impact of plastic deformation and allow reducing the dimensionality of the data describing the structure. The architecture is tested on the results of 196 car crash simulations of a model with 133 different components, where material properties are varied. In the latent representation we can detect patterns in the plastic deformation for the different components. The predicted bounding boxes give an estimate of the final simulation result and their quality is improved in comparison to different baselines

    Exploring Low to Moderate Velocity Motor Vehicle Rear Impacts as a Viable Injury Mechanism in the Lumbar Spine

    Get PDF
    Epidemiological research suggests that up to 50% of individuals involved in low speed rear impact collisions develop acute onset low back pain. Given that little information is known about the low back injury mechanisms as a result of these collisions the overarching goal of this thesis was to explore low to moderate velocity rear-end collisions as a potential low back injury mechanism. Using a combination of data mining, in vivo and in vitro mechanical testing of porcine functional spinal units, the global purposes of this thesis were to (i) explore the types of low to moderate velocity collisions that frequently result in claims of low back pain and injury (ii) explore the influence of low velocity rear impact collisions on peak in vivo joint loading, occupant pain reporting and passive tissue response of the lumbar spine, and (iii) characterize the effects of these mechanical exposures and explore facet joint capsule injury as a potential source of injury and pain generating pathways following low to moderate severity impacts. In-line with these global purposes, four independent studies were conducted, each with their own focused objectives. Study I - Exploring Low Velocity Collision Characteristics Associated with Claimed Low Back Pain Background: Up to fifty percent of individuals involved in low to moderate velocity collisions report low back pain. However, our understanding of the specific collision or occupant characteristics that result in such claims of low back pain remains limited. Objectives: The primary objective of this study was to define the circumstances of low velocity motor vehicle collisions that result in litigation in Ontario with claims of low back injury. Methods: Data for this investigation were obtained from a forensic engineering firm based in Toronto, Ontario, Canada. The database was searched and only cases with an evaluation of the injuries sustained in passenger vehicle to vehicle collisions, with a collision severity of 24 km/hour or less were included in this analysis. Each identified case was reviewed for collision characteristics, pre-existing medical conditions and injuries claimed. Descriptive statistics (mean, SD and ranges) across low back injury claims were computed for documented variables. Results: Out the 83 cases reviewed, 77% involved a claim of low back injury. Specific to those who claimed low back injury, examination of the medical history revealed that pre-existing low back pain (LBP) or evidence of lumbar disc degeneration were particularly common with 63% of claimants either having had a history of LBP or evidence of lumbar disc degeneration, or both. Of all low back injury claims, 97% were accompanied by a whiplash and/or whiplash associated disorder claim. For low back injury claims, a rear-end impact was the most common configuration (70% of all low back injury claims involved a rear-end collision). The majority of all low back injury claimants experienced a change in velocity of 13 km/hour or less (69%), with 42% of all low back injury claims falling between collision severities of 10 – 12 km/hour. Conclusions: Results indicate that rear-end collision severities of 10 – 12 km/hour appear to be particularly common with respect to low back injury reporting; more severe collisions were not associated with greater low back injury reporting. This result contrasts with previously published neck injury risk data, which demonstrated the risk of neck injury symptom reporting increases with collision severity. Evidence of lumbar disc degeneration was particularly common across claimants with low back injury claims. Study II - Characterizing Trunk Muscle Activations During Simulated Low Speed Rear Impact Collisions Background: The internal forces generated by the musculature of the lumbar region create most of the mechanical load placed on the spine. Thus, despite the anticipated low external forces generated between the occupant and the automobile seatback during a low speed rear impact collision, increased muscle tension may influence the resultant peak joint loads experienced in the lumbar spine. Consequently, the risk of low back injury may be altered by muscle activation. Objective: The purpose of this study was to evaluate the activation profiles of muscles surrounding the lumbar spine during unanticipated and braced simulated rear-end collisions. Methods: Twenty-two low speed sled tests were performed on eleven human volunteers (△v = 4 km/h). Each volunteer was exposed to one unanticipated impact and one braced impact. Accelerometers were mounted on the test sled and participants’ low back. Six bilateral channels of surface electromyography (EMG) were collected from the trunk during impact trials. Peak lumbar accelerations, peak muscle activation delay, muscle onset time and peak EMG magnitudes, normalized to maximum voluntary contractions (MVC), were examined across test conditions. Results: While not statistically significant, bracing for impact tended to reduce peak lumbar acceleration in the initial rearward impact phase of the occupant’s motion by approximately 15%. The only trunk muscles with peak activations exceeding 10% MVC during the unanticipated impact were the thoracic erector spinae. Time of peak muscle activation was slightly longer for the unanticipated condition (unanticipated = 296 ms; braced = 241 ms). Conclusions: Results from this investigation demonstrate that during an unanticipated low speed rear-end collision, the peak activation of muscles in the lumbar spine are low in magnitude. As such, muscle activation likely has minimal contribution to the internal joint loads that are experienced in the lumbar intervertebral joints during low speed rear impact collisions. Study III - Characterizing In Vivo Mechanical Exposures of the Lumbar Spine During Simulated Low Velocity Rear Impact Collisions Background: Historically, there has been a lack of focus on the lumbar spine during rear impacts because of the perception that the automotive seat back should protect the lumbar spine from injury. As a result, there have been no studies involving human volunteers to address the risk of low back injury in low velocity rear impact collisions. Objectives: The primary objectives of this study were to explore lumbar kinematics and joint reaction forces in human volunteers during simulated rear impact collisions and to examine the influence of lumbar support on the peak motion and forces experienced in the lumbar spine. A secondary objective was to evaluate lumped passive stiffness changes and low back pain reporting after a simulated rear impact collision Methods: Twenty-four participants (12 male, 12 female) were recruited. A custom-built crash sled was used to simulate unanticipated rear impact collisions, with a change in velocity of approximately 8 km/h. Randomized collisions were completed with and without lumbar support. Measures of passive stiffness and flexion-relaxation-ratio (FRR) were obtained prior to impact (Pre), immediately post impact (Post) and 24 hours post impact (Post-24). LBP reporting was monitored over the next 24 hours leading up to the final Post-24 measures. For collision simulations inverse dynamics analyses were conducted, and outputs were used to generate estimates of peak L4/L5 joint compression and shear. From the passive trials, lumbar flexion/extension moment-angle curves were generated to quantify time-varying changes in the passive stiffness of the lumbar spine, Post and Post-24 relative to Pre. FRRs were computed as the ratio of thoracic erector spinae and lumbar erector spinae muscle activation in an upright posture to muscle activation in a flexed position Results: Average [± standard deviation] peak L4/L5 compression and shear reaction forces were not significantly different without lumbar support (Compression = 498.22 N [±178.0]; Shear = 302.2 N [± 98.5]) compared to with lumbar support (Compression = 484.5 N [±151.1]; Shear = 291.3 N [±176.8]). Lumbar flexion angle at the point of peak shear was 36 degrees [±12] without and 33 degrees [±11] with lumbar support, respectively, with 0 degrees being the lumbar posture in upright standing. No participants developed clinically significant levels of LBP after impact. Time was a significant factor for the length of the low stiffness flexion and extension zone (p = 0.049; p = 0.035), the length of the low stiffness zone was longer in the Post and Post-24 trial for low stiffness flexion and longer in the Post-24 for low stiffness extension. Conclusions: Findings demonstrate that during a laboratory-simulation of an unanticipated 8 km/hour rear-impact collision, young healthy adults do not develop LBP. Lumbar support did not significantly influence the estimated L4/L5 joint reaction forces. Changes in the low stiffness portion of the passive flexion/extension curves were observed following impact and persisted for 24 hours. Changes in passive stiffness may lead to changes in the loads and load distributions within the passive structures such as the ligaments and intervertebral discs following impacts. Study IV - Exploring the Interaction Effects of Impact Severity and Posture on Vertebral Joint Mechanics Background: To date, no in vitro studies have been conducted to explore lumbar soft tissue injury potential and altered mechanical properties from exposure to impact forces. Typically, after a motor vehicle collision, the cause of a reported acute onset of low back pain is difficult to identify with potential soft tissue strain injury sites including the facet joint and highly innervated facet joint capsule ligament (FCL). Objectives: The purpose of this investigation was to quantify intervertebral translation and facet joint capsule strain under varying postures and impact severities. A secondary objective was to evaluate flexion-extension and shear neutral zone changes pre and post impact. Methods: A total of 72 porcine cervical FSUs were included in the study. Three levels of impact severity (4g, 8g, 11g), and three postures (Neutral Flexion and Extension) were examined using a full-factorial design. Impacts were applied using a custom-built impact track which simulated impact parameters similar to those experienced in low to moderate speed motor vehicle collisions. Passive flexion-extension and shear neutral zone testing were completed immediately prior to and immediately post impact. Intervertebral translation and the strain tensor of the facet capsule ligament were measured during impacts. Results: A significant main effect (p > 0.001) of collision severity was observed for peak intervertebral translation and peak FCL shear strain (p = 0.003). A significant two-way interaction was observed between pre-post and impact severity for flexion-extension neutral zone length (p = 0.031) and stiffness (p>0.001) and anterior-posterior shear neutral zone length (p = 0.047) and stiffness (p>0.001). This was a result of increased neutral zone range and decreased neutral zone stiffness pre-post for the 11g severity impact (regardless of posture). Conclusions: This investigation provides evidence that overall the peak vertebral translations observed across 4g to 11g impacts are below previously published ultimate shear failure displacements. FSU’s exposed to the highest severity impact (11g) had significant NZ changes, with increases in joint laxity in flexion-extension and shear testing and decreased stiffness, suggesting that soft tissue injury may have occurred. Despite observed main effects of impact severity, no influence of posture was observed. This lack of influence of posture and small FCL strain magnitudes suggest that the FCL does not appear to undergo injurious or permanent mechanical changes in response to low to moderate MVC impact scenarios. Study V - Characterizing the Mechanical Properties of the Facet Joint Capsule Ligament Background: The facet joint capsule ligament (FCL) is a structure in the lumbar spine that constrains motions of the vertebrae. Previous work has demonstrated that under physiological motion the FCL is subjected to significant deformation with FCL strains increasing in magnitude with increasing flexion and extension moments. Thus, it is important to characterize the mechanical response of the FCL for investigations into injury mechanisms. Sub failure loads can produce micro-damage resulting in increased laxity, decreased stiffness and altered viscoelastic responses. Thus, the objective of this investigation was to determine the mechanical and viscoelastic properties of the FCL under various magnitudes of strain from control samples and samples that had been exposed to an impact. Objectives: The purpose of this investigation was to quantify the mechanical properties and viscoelastic response of control and impacted FCL. Methods: 200 tissue samples were excised from the right and left FCL of 80 porcine cervical functional spinal units (FSU’s). Tissue samples were excised from FSU’s obtained from Study 4. Twenty FCL tissue samples served as the control group. The remaining 180 FCL tissue samples were randomly obtained from FSU’s that had been exposed to one of nine impact conditions (impacted tissue). Each specimen was loaded uniaxially, collinear with the primary fiber orientation. The loading protocol was identical for all specimens: preconditioning with 5 cycles of loading/unloading to 5% strain, followed by a 30 second rest period, 5 cycles of 10% strain and 1 cycle of 10% strain with a hold duration at 10% strain for 240 seconds. The same protocol followed for 30% (cyclic-30% & 30%-hold) and 50% strain (cyclic-50% & 50%-hold). All loading and unloading were performed at a rate of 2%/sec. All impacted FCL properties were compared back to controls. Measures of stiffness, hysteresis and force-relaxation were computed for the 30% and 50% strain conditions. Results: No significant differences in stiffness were observed for impacted specimens in comparison to control (30% Control = 2.64 N/mm; 4 g = 2.20 N/mm, 8 g = 2.07 N/mm, 16 g = 2.16 N/mm)(50% Control = 5.06 N/mm; 4g = 4.60 N/mm, 8 g = 4.07 N/mm, 16 g =4.64 N/mm). Impacted specimens from the 8g Flexed and 11 g Flexed and Neutral conditions exhibited greater hysteresis during the cyclic-30% and cyclic-50%, in comparison to controls. In addition, specimens from the 8g and 11g Flexed conditions resulted in greater force relaxation for the 50%-hold conditions. Conclusions: Results from this study demonstrate viscoelastic changes in FCL samples exposed to moderate and highspeed impacts in the flexed posture. However, it is interesting that these viscoelastic changes were not accompanied by changes in stiffness. Findings from this investigation provide novel insight and provide mechanical and viscoelastic properties of the FCL both in control and impacted scenarios. Global Summary: Findings from this thesis demonstrate that (i) rear-end collision severities of 10 – 12 km/hour appear to be particularly common with respect to low back injury reporting (ii) during a laboratory-simulation of an unanticipated 8 km/hour rear-impact collision, young healthy adults do not develop LBP, however, changes in the low stiffness portion of the passive flexion/extension curves were observed following impact and persisted for 24 hours and (iii) the observed peak displacements in porcine functional spinal units exposed to varying impact severities are below ultimate shear failure displacements and does not support a lumbar spine injury mechanism resulting in acute traumatic bone fractures and/or acute traumatic IVD herniations in previously “healthy” tissues. Overall, the small FCL strain magnitudes during impacts and unchanged FCL mechanical properties post-impact suggest that the FCL does not undergo injurious or permanent mechanical changes in response to low to moderate MVC impact scenarios. Collectively, the findings from this thesis indicate that there are no direct mechanical changes that would indicate the high incidence of low back pain reporting following low to moderate severity rear-end motor vehicle impacts. However, changes in passive tissue properties were observed, and if persistent over time, may predispose individuals to secondary pain pathways. It is also important to note that this thesis tested healthy conditions and the results do not directly apply to pre-existing LBP cases being exposed to the same impacts

    Design optimization of vehicle structures for crashworthiness improvement

    Get PDF
    The complicated nature of the physical crash processes of complex vehicle structures makes design optimization for crashworthiness a very challenging task. Moreover, large scale and highly nonlinear nature of crashworthiness simulations of vehicle structure make it impractical to conduct direct optimization on the full nonlinear model of the structure. The main objective of the thesis is to present a systematic and practical methodology to conduct vehicle crashworthiness design optimization efficiently at early stages of design. The thesis includes four main parts. In the first part, an efficient and practical methodology for design optimization of vehicle structures under frontal impact for crashworthiness improvement is presented. The proposed methodology is based on identifying the main vehicle structural part contributing most to the total amount of impact energy absorbed in the whole vehicle structure. The computationally efficient surrogate model of expensive nonlinear finite element simulation of this major vehicle part is developed and then integrated with gradient based optimization algorithm to maximize its absorbed impact energy while guarding against increase in its weight. In the second part, a methodology for deriving the important relation between minimum structural weight and maximum impact energy is presented. The proposed methodology is based on the principle of the Pareto front and multiobjective optimization. The methodology enables the designer to evaluate the crashworthiness performance of any suggested design easily and effectively. Moreover, the methodology provides different optimum designs from which the designer can easily select the optimum design variables to improve the performance of the initial design. In the third part, the crashworthiness behavior of simple thin walled structures and vehicle structural components made of magnesium due to its light weight is examined and a new methodology for material design optimization is presented. The proposed methodology adds material type as design variables to formal size design variables. Direct optimization using the genetic algorithm is conducted to find the optimum material combination and part's thicknesses to improve the crashworthiness performance of the vehicle structure. Finally in the fourth part, the effect of imperfection on crush elements performance is studied. Different imperfection configurations are proposed to improve the crashworthiness performance of crush elements. The genetic algorithm is directly combined with nonlinear finite elements models to search for optimum imperfection values. The results show that the crashworthiness performance of crush elements can be greatly improved through introduction of proper imperfection. Using the proposed methodologies, the current research presents a fundamental and systematic study to conduct design optimization of vehicle structures practically and efficiently

    ANALYSIS OF LARGE-SCALE TRAFFIC INCIDENTS AND EN ROUTE DIVERSIONS DUE TO CONGESTION ON FREEWAYS

    Get PDF
    En route traffic diversions have been identified as one of the effective traffic operations strategies in traffic incident management. The employment of such traffic operations will help relieve the congestion, save travel time, as well as reduce energy use and tailpipe emissions. However, little attention has been paid to quantifying the benefits by deploying such traffic operations under large-scale traffic incident-induced congestion on freeways, specifically under the connected vehicle environment. New Connected and Automated Vehicle technology, known as “CAV”, has the potential to further increase the benefits by deploying en route traffic diversions. This dissertation research is intended to study the benefits of en route traffic diversion by analyzing large-scale incident-related characteristics, as well as optimizing the signal plans under the diversion framework. The dissertation contributes to the art of traffic incident management by 1) understanding the characteristics of large-scale traffic incidents, and 2) developing a framework under the CAV to study the benefits of en route diversions.Towards the end, 4 studies are linked together for the dissertation. The first study will be focusing on the analysis of the large-scale traffic incidents by using the traffic incident data collected on East Tennessee major roadways. Specifically, incident classification, incident duration prediction, as well as sequential real-time prediction are studied in detail. The second study mainly focuses on truck-involved crashes. By incorporating injury severity information into the incident duration analysis, the second study developed a bivariate analysis framework using a unique dataset created by matching an incident database and a crash database. Then, the third study estimates and evaluates the benefit of deploying the en route traffic diversion strategy under the large-scale traffic incident-induced congestion on freeways by using simulation models and incorporating the analysis outcomes from the other two studies. The last study optimizes the signal timing plans for two intersections, which generates some implications along the arterial corridor under connected vehicles environment to gain more benefits in terms of travel timing savings for the studies network in Knoxville, Tennessee. The implications of the findings (e.g. faster response of agencies to the large-scale incidents reduces the incident duration, penetration of CAVs in the traffic diversion operations further reduces traffic network system delay), as well as the potential applications, will be discussed in this dissertation study
    • …
    corecore