473,304 research outputs found

    Screensaver: an open source lab information management system (LIMS) for high throughput screening facilities

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Shared-usage high throughput screening (HTS) facilities are becoming more common in academe as large-scale small molecule and genome-scale RNAi screening strategies are adopted for basic research purposes. These shared facilities require a unique informatics infrastructure that must not only provide access to and analysis of screening data, but must also manage the administrative and technical challenges associated with conducting numerous, interleaved screening efforts run by multiple independent research groups.</p> <p>Results</p> <p>We have developed Screensaver, a free, open source, web-based lab information management system (LIMS), to address the informatics needs of our small molecule and RNAi screening facility. Screensaver supports the storage and comparison of screening data sets, as well as the management of information about screens, screeners, libraries, and laboratory work requests. To our knowledge, Screensaver is one of the first applications to support the storage and analysis of data from both genome-scale RNAi screening projects and small molecule screening projects.</p> <p>Conclusions</p> <p>The informatics and administrative needs of an HTS facility may be best managed by a single, integrated, web-accessible application such as Screensaver. Screensaver has proven useful in meeting the requirements of the ICCB-Longwood/NSRB Screening Facility at Harvard Medical School, and has provided similar benefits to other HTS facilities.</p

    Deploying a Deep Learning-based Application for an Efficient Thermal Energy Storage Air-Conditioning (TES-AC) System: Design Guidelines

    Get PDF
    Facility management and maintenance of the Thermal-Energy-Storage AirConditioning (TES-AC) system is a tedious task at a large scale mainly due to the charging load that can increase energy consumption if needed to be charged at peak hours. Besides, maintenance of TES-AC at a large scale gets complex as it contains many sensor data. By utilizing deep learning techniques on the sensor data, charging load prediction can be made possible, so facility managers can prepare in advance. However, a deep learning-based application will be unusable if it is not deployed in a userfriendly manner where facility managers can benefit from this application. Hence, this research focuses on gathering design guidelines for a deep learning-based application and further validates the design considerations with a developed application for efficient human-computer interaction through qualitative analysis. The approach taken to gather design guidelines demonstrated a positive correlation between expert-suggested features and the user-friendly aspect of the application as 67.08% of participants found the features suggested by experts to be most satisfactory. Furthermore, it evaluates user satisfaction with the advanced developed application for TES-AC according to the gathered design guidelines

    Life Cycle Modelling and Design Knowledge Development in 3D Virtual Environments

    Get PDF
    Experience plays an important role in building management. “How often will this asset need repair?” or “How much time is this repair going to take?” are types of questions that project and facility managers face daily in planning activities. Failure or success in developing good schedules, budgets and other project management tasks depend on the project manager's ability to obtain reliable information to be able to answer these types of questions. Young practitioners tend to rely on information that is based on regional averages and provided by publishing companies. This is in contrast to experienced project managers who tend to rely heavily on personal experience. Another aspect of building management is that many practitioners are seeking to improve available scheduling algorithms, estimating spreadsheets and other project management tools. Such “micro-scale” levels of research are important in providing the required tools for the project manager's tasks. However, even with such tools, low quality input information will produce inaccurate schedules and budgets as output. Thus, it is also important to have a broad approach to research at a more “macro-scale.” Recent trends show that the Architectural, Engineering, Construction (AEC) industry is experiencing explosive growth in its capabilities to generate and collect data. There is a great deal of valuable knowledge that can be obtained from the appropriate use of this data and therefore the need has arisen to analyse this increasing amount of available data. Data Mining can be applied as a powerful tool to extract relevant and useful information from this sea of data. Knowledge Discovery in Databases (KDD) and Data Mining (DM) are tools that allow identification of valid, useful, and previously unknown patterns so large amounts of project data may be analysed. These technologies combine techniques from machine learning, artificial intelligence, pattern recognition, statistics, databases, and visualization to automatically extract concepts, interrelationships, and patterns of interest from large databases. The project involves the development of a prototype tool to support facility managers, building owners and designers. This Industry focused report presents the AIMMTM prototype system and documents how and what data mining techniques can be applied, the results of their application and the benefits gained from the system. The AIMMTM system is capable of searching for useful patterns of knowledge and correlations within the existing building maintenance data to support decision making about future maintenance operations. The application of the AIMMTM prototype system on building models and their maintenance data (supplied by industry partners) utilises various data mining algorithms and the maintenance data is analysed using interactive visual tools. The application of the AIMMTM prototype system to help in improving maintenance management and building life cycle includes: (i) data preparation and cleaning, (ii) integrating meaningful domain attributes, (iii) performing extensive data mining experiments in which visual analysis (using stacked histograms), classification and clustering techniques, associative rule mining algorithm such as “Apriori” and (iv) filtering and refining data mining results, including the potential implications of these results for improving maintenance management. Maintenance data of a variety of asset types were selected for demonstration with the aim of discovering meaningful patterns to assist facility managers in strategic planning and provide a knowledge base to help shape future requirements and design briefing. Utilising the prototype system developed here, positive and interesting results regarding patterns and structures of data have been obtained

    Strengthening Integrated Primary Health Care in Sofala, Mozambique

    Get PDF
    Background: Large increases in health sector investment and policies favoring upgrading and expanding the public sector health network have prioritized maternal and child health in Mozambique and, over the past decade, Mozambique has achieved substantial improvements in maternal and child health indicators. Over this same period, the government of Mozambique has continued to decentralize the management of public sector resources to the district level, including in the health sector, with the aim of bringing decision-making and resources closer to service beneficiaries. Weak district level management capacity has hindered the decentralization process, and building this capacity is an important link to ensure that resources translate to improved service delivery and further improvements in population health. A consortium of the Ministry of Health, Health Alliance International, Eduardo Mondlane University, and the University of Washington are implementing a health systems strengthening model in Sofala Province, central Mozambique.Description of implementation: The Mozambique Population Health Implementation and Training (PHIT) Partnership focuses on improving the quality of routine data and its use through appropriate tools to facilitate decision making by health system managers; strengthening management and planning capacity and funding district health plans; and building capacity for operations research to guide system-strengthening efforts. This seven-year effort covers all 13 districts and 146 health facilities in Sofala Province.Evaluation design: A quasi-experimental controlled time-series design will be used to assess the overall impact of the partnership strategy on under-5 mortality by examining changes in mortality pre- and post-implementation in Sofala Province compared with neighboring Manica Province. The evaluation will compare a broad range of input, process, output, and outcome variables to strengthen the plausibility that the partnership strategy led to healthsystem improvements and subsequent population health impact.Discussion: The Mozambique PHIT Partnership expects to provide evidence on the effect of efforts to improvedata quality coupled with the introduction of tools, training, and supervision to improve evidence-based decision making. This contribution to the knowledge base on what works to enhance health systems is highly replicable for rapid scale-up to other provinces in Mozambique, as well as other sub-Saharan African countries with limitedresources and a commitment to comprehensive primary health care
    • …
    corecore