24,043 research outputs found

    Diabetes Prediction Using Artificial Neural Network

    Get PDF
    Diabetes is one of the most common diseases worldwide where a cure is not found for it yet. Annually it cost a lot of money to care for people with diabetes. Thus the most important issue is the prediction to be very accurate and to use a reliable method for that. One of these methods is using artificial intelligence systems and in particular is the use of Artificial Neural Networks (ANN). So in this paper, we used artificial neural networks to predict whether a person is diabetic or not. The criterion was to minimize the error function in neural network training using a neural network model. After training the ANN model, the average error function of the neural network was equal to 0.01 and the accuracy of the prediction of whether a person is diabetics or not was 87.3

    User-centered visual analysis using a hybrid reasoning architecture for intensive care units

    Get PDF
    One problem pertaining to Intensive Care Unit information systems is that, in some cases, a very dense display of data can result. To ensure the overview and readability of the increasing volumes of data, some special features are required (e.g., data prioritization, clustering, and selection mechanisms) with the application of analytical methods (e.g., temporal data abstraction, principal component analysis, and detection of events). This paper addresses the problem of improving the integration of the visual and analytical methods applied to medical monitoring systems. We present a knowledge- and machine learning-based approach to support the knowledge discovery process with appropriate analytical and visual methods. Its potential benefit to the development of user interfaces for intelligent monitors that can assist with the detection and explanation of new, potentially threatening medical events. The proposed hybrid reasoning architecture provides an interactive graphical user interface to adjust the parameters of the analytical methods based on the users' task at hand. The action sequences performed on the graphical user interface by the user are consolidated in a dynamic knowledge base with specific hybrid reasoning that integrates symbolic and connectionist approaches. These sequences of expert knowledge acquisition can be very efficient for making easier knowledge emergence during a similar experience and positively impact the monitoring of critical situations. The provided graphical user interface incorporating a user-centered visual analysis is exploited to facilitate the natural and effective representation of clinical information for patient care

    A Multi-model Approach in Developing an Intelligent Assistant for Diagnosis Recommendation in Clinical Health Systems

    Get PDF
    Clinical health information systems capture massive amounts of unstructured data from various health and medical facilities. This study utilizes unstructured patient clinical text data to develop an intelligent assistant that can identify possible related diagnoses based on a given text input. The approach applies a one-vs-rest binary classification technique wherein given an input text data, it is identified whether it can be positively or negatively classified for a given diagnosis. Multi-layer Feed-Forward Neural Network models were developed for each individual diagnosis case. The task of the intelligent assistant is to iterate over all the different models and return those that output a positive diagnosis. To validate the performance of the models, the performance metrics were compared against Naive Bayes, Decision Trees, and K-Nearest Neighbor. The results show that the neural network learner provided better performance scores in both accuracy and area under the curve metric scores. Further, testing on multiple diagnoses also shows that the methodology for developing the diagnosis models can be replicated for development of models for other diseases as well
    • ā€¦
    corecore