219 research outputs found

    Spread spectrum-based video watermarking algorithms for copyright protection

    Get PDF
    Merged with duplicate record 10026.1/2263 on 14.03.2017 by CS (TIS)Digital technologies know an unprecedented expansion in the last years. The consumer can now benefit from hardware and software which was considered state-of-the-art several years ago. The advantages offered by the digital technologies are major but the same digital technology opens the door for unlimited piracy. Copying an analogue VCR tape was certainly possible and relatively easy, in spite of various forms of protection, but due to the analogue environment, the subsequent copies had an inherent loss in quality. This was a natural way of limiting the multiple copying of a video material. With digital technology, this barrier disappears, being possible to make as many copies as desired, without any loss in quality whatsoever. Digital watermarking is one of the best available tools for fighting this threat. The aim of the present work was to develop a digital watermarking system compliant with the recommendations drawn by the EBU, for video broadcast monitoring. Since the watermark can be inserted in either spatial domain or transform domain, this aspect was investigated and led to the conclusion that wavelet transform is one of the best solutions available. Since watermarking is not an easy task, especially considering the robustness under various attacks several techniques were employed in order to increase the capacity/robustness of the system: spread-spectrum and modulation techniques to cast the watermark, powerful error correction to protect the mark, human visual models to insert a robust mark and to ensure its invisibility. The combination of these methods led to a major improvement, but yet the system wasn't robust to several important geometrical attacks. In order to achieve this last milestone, the system uses two distinct watermarks: a spatial domain reference watermark and the main watermark embedded in the wavelet domain. By using this reference watermark and techniques specific to image registration, the system is able to determine the parameters of the attack and revert it. Once the attack was reverted, the main watermark is recovered. The final result is a high capacity, blind DWr-based video watermarking system, robust to a wide range of attacks.BBC Research & Developmen

    Real Time 3D Visualization of DEM Combined with a Robust DCT Based Data-Hiding Method

    No full text
    International audienceUsing aerial photography, satellite imagery, scanned maps and Digital Elevation Models implies to make storage and visualization strategy choices. To obtain a three dimensional visualization, we have to link these images called texture with the terrain geometry named Digital Elevation Model. These information are usually stored in three different files (One for the DEM, one for the texture and one for the geo-referenced coordinates). In this paper we propose to store these information in only one file. In order to solve this problem, we present a technique for color data hiding of images, based on DC components of the DCT-coefficients. In our application the images are the texture, and the elevation data are hidden in each block. This method mainly protects against JPEG compression and cropping

    JPEG steganography: A performance evaluation of quantization tables

    Get PDF
    The two most important aspects of any image based steganographic system are the imperceptibility and the capacity of the stego image. This paper evaluates the performance and efficiency of using optimized quantization tables instead of default JPEG tables within JPEG steganography. We found that using optimized tables significantly improves the quality of stego-images. Moreover, we used this optimization strategy to generate a 16x16 quantization table to be used instead of that suggested. The quality of stego-images was greatly improved when these optimized tables were used. This led us to suggest a new hybrid steganographic method in order to increase the embedding capacity. This new method is based on both and Jpeg-Jsteg methods. In this method, for each 16x16 quantized DCT block, the least two significant bits (2-LSBs) of each middle frequency coefficient are modified to embed two secret bits. Additionally, the Jpeg-Jsteg embedding technique is used for the low frequency DCT coefficients without modifying the DC coefficient. Our experimental results show that the proposed approach can provide a higher information-hiding capacity than the other methods tested. Furthermore, the quality of the produced stego-images is better than that of other methods which use the default tables

    A study and some experimental work of digital image and video watermarking

    Get PDF
    The rapid growth of digitized media and the emergence of digital networks have created a pressing need for copyright protection and anonymous communications schemes. Digital watermarking (or data hiding in a more general term) is a kind of steganography technique by adding information into a digital data stream. Several most important watermarking schemes applied to multilevel and binary still images and digital videos were studied. They include schemes based on DCT (Discrete Cosine Transform), DWT (Discrete Wavelet Transform), and fractal transforms. The question whether these invisible watermarking techniques can resolve the issue of rightful ownership of intellectual properties was discussed. The watermarking schemes were further studied from malicious attack point of view, which is considered an effective way to advance the watermarking techniques. In particular, the StirMark robustness tests based on geometrical distortion were carried out. A binary watermarking scheme applied in the DCT domain is presented in this research project. The effect of the binarization procedure necessarily encountered in dealing with binary document images is found so strong that most of conventional embedding schemes fail in dealing with watermarking of binary document images. Some particular measures have to be taken. The initial simulation results indicate that the proposed technique is promising though further efforts need to be made

    Contextual biometric watermarking of fingerprint images

    Get PDF
    This research presents contextual digital watermarking techniques using face and demographic text data as multiple watermarks for protecting the evidentiary integrity of fingerprint image. The proposed techniques embed the watermarks into selected regions of fingerprint image in MDCT and DWT domains. A general image watermarking algorithm is developed to investigate the application of MDCT in the elimination of blocking artifacts. The application of MDCT has improved the performance of the watermarking technique compared to DCT. Experimental results show that modifications to fingerprint image are visually imperceptible and maintain the minutiae detail. The integrity of the fingerprint image is verified through high matching score obtained from the AFIS system. There is also a high degree of correlation between the embedded and extracted watermarks. The degree of similarity is computed using pixel-based metrics and human visual system metrics. It is useful for personal identification and establishing digital chain of custody. The results also show that the proposed watermarking technique is resilient to common image modifications that occur during electronic fingerprint transmission

    Digital watermarking in medical images

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University, 05/12/2005.This thesis addresses authenticity and integrity of medical images using watermarking. Hospital Information Systems (HIS), Radiology Information Systems (RIS) and Picture Archiving and Communication Systems (P ACS) now form the information infrastructure for today's healthcare as these provide new ways to store, access and distribute medical data that also involve some security risk. Watermarking can be seen as an additional tool for security measures. As the medical tradition is very strict with the quality of biomedical images, the watermarking method must be reversible or if not, region of Interest (ROI) needs to be defined and left intact. Watermarking should also serve as an integrity control and should be able to authenticate the medical image. Three watermarking techniques were proposed. First, Strict Authentication Watermarking (SAW) embeds the digital signature of the image in the ROI and the image can be reverted back to its original value bit by bit if required. Second, Strict Authentication Watermarking with JPEG Compression (SAW-JPEG) uses the same principal as SAW, but is able to survive some degree of JPEG compression. Third, Authentication Watermarking with Tamper Detection and Recovery (AW-TDR) is able to localise tampering, whilst simultaneously reconstructing the original image

    Data hiding in multimedia - theory and applications

    Get PDF
    Multimedia data hiding or steganography is a means of communication using subliminal channels. The resource for the subliminal communication scheme is the distortion of the original content that can be tolerated. This thesis addresses two main issues of steganographic communication schemes: 1. How does one maximize the distortion introduced without affecting fidelity of the content? 2. How does one efficiently utilize the resource (the distortion introduced) for communicating as many bits of information as possible? In other words, what is a good signaling strategy for the subliminal communication scheme? Close to optimal solutions for both issues are analyzed. Many techniques for the issue for maximizing the resource, viz, the distortion introduced imperceptibly in images and video frames, are proposed. Different signaling strategies for steganographic communication are explored, and a novel signaling technique employing a floating signal constellation is proposed. Algorithms for optimal choices of the parameters of the signaling technique are presented. Other application specific issues like the type of robustness needed are taken into consideration along with the established theoretical background to design optimal data hiding schemes. In particular, two very important applications of data hiding are addressed - data hiding for multimedia content delivery, and data hiding for watermarking (for proving ownership). A robust watermarking protocol for unambiguous resolution of ownership is proposed

    Watermarking on Compressed Image: A New Perspective

    Get PDF
    • …
    corecore