12,878 research outputs found

    Enhanced Position Verification for VANETs using Subjective Logic

    Full text link
    The integrity of messages in vehicular ad-hoc networks has been extensively studied by the research community, resulting in the IEEE~1609.2 standard, which provides typical integrity guarantees. However, the correctness of message contents is still one of the main challenges of applying dependable and secure vehicular ad-hoc networks. One important use case is the validity of position information contained in messages: position verification mechanisms have been proposed in the literature to provide this functionality. A more general approach to validate such information is by applying misbehavior detection mechanisms. In this paper, we consider misbehavior detection by enhancing two position verification mechanisms and fusing their results in a generalized framework using subjective logic. We conduct extensive simulations using VEINS to study the impact of traffic density, as well as several types of attackers and fractions of attackers on our mechanisms. The obtained results show the proposed framework can validate position information as effectively as existing approaches in the literature, without tailoring the framework specifically for this use case.Comment: 7 pages, 18 figures, corrected version of a paper submitted to 2016 IEEE 84th Vehicular Technology Conference (VTC2016-Fall): revised the way an opinion is created with eART, and re-did the experiments (uploaded here as correction in agreement with TPC Chairs

    Location Spoofing Detection for VANETs by a Single Base Station in Rician Fading Channels

    Full text link
    In this work we examine the performance of a Location Spoofing Detection System (LSDS) for vehicular networks in the realistic setting of Rician fading channels. In the LSDS, an authorized Base Station (BS) equipped with multiple antennas utilizes channel observations to identify a malicious vehicle, also equipped with multiple antennas, that is spoofing its location. After deriving the optimal transmit power and the optimal directional beamformer of a potentially malicious vehicle, robust theoretical analysis and detailed simulations are conducted in order to determine the impact of key system parameters on the LSDS performance. Our analysis shows how LSDS performance increases as the Rician K-factor of the channel between the BS and legitimate vehicles increases, or as the number of antennas at the BS or legitimate vehicle increases. We also obtain the counter-intuitive result that the malicious vehicle's optimal number of antennas conditioned on its optimal directional beamformer is equal to the legitimate vehicle's number of antennas. The results we provide here are important for the verification of location information reported in IEEE 1609.2 safety messages.Comment: 6 pages, 5 figures, Added further clarification on constraints imposed on the detection minimization strategy. Minor typos fixe

    Emerging privacy challenges and approaches in CAV systems

    Get PDF
    The growth of Internet-connected devices, Internet-enabled services and Internet of Things systems continues at a rapid pace, and their application to transport systems is heralded as game-changing. Numerous developing CAV (Connected and Autonomous Vehicle) functions, such as traffic planning, optimisation, management, safety-critical and cooperative autonomous driving applications, rely on data from various sources. The efficacy of these functions is highly dependent on the dimensionality, amount and accuracy of the data being shared. It holds, in general, that the greater the amount of data available, the greater the efficacy of the function. However, much of this data is privacy-sensitive, including personal, commercial and research data. Location data and its correlation with identity and temporal data can help infer other personal information, such as home/work locations, age, job, behavioural features, habits, social relationships. This work categorises the emerging privacy challenges and solutions for CAV systems and identifies the knowledge gap for future research, which will minimise and mitigate privacy concerns without hampering the efficacy of the functions

    Cooperative localization by dual foot-mounted inertial sensors and inter-agent ranging

    Full text link
    The implementation challenges of cooperative localization by dual foot-mounted inertial sensors and inter-agent ranging are discussed and work on the subject is reviewed. System architecture and sensor fusion are identified as key challenges. A partially decentralized system architecture based on step-wise inertial navigation and step-wise dead reckoning is presented. This architecture is argued to reduce the computational cost and required communication bandwidth by around two orders of magnitude while only giving negligible information loss in comparison with a naive centralized implementation. This makes a joint global state estimation feasible for up to a platoon-sized group of agents. Furthermore, robust and low-cost sensor fusion for the considered setup, based on state space transformation and marginalization, is presented. The transformation and marginalization are used to give the necessary flexibility for presented sampling based updates for the inter-agent ranging and ranging free fusion of the two feet of an individual agent. Finally, characteristics of the suggested implementation are demonstrated with simulations and a real-time system implementation.Comment: 14 page

    Communication technologies to design vehicle-to-vehicle and vehile-to-infrastructures applications

    Get PDF
    Intelligent Transport Systems use communication technologies to offer real-time traffic information services to road users and government managers. Vehicular Ad Hoc Networks is an important component of ITS where vehicles communicate with other vehicles and road-side infrastructures, analyze and process received information, and make decisions according to that. However, features like high vehicle speeds, constant mobility, varying topology, traffic density, etc. induce challenges that make conventional wireless technologies unsuitable for vehicular networks. This paper focuses on the process of designing efficient vehicle-to-vehicle and vehicle-to road-side infrastructure applications.Peer ReviewedPostprint (published version

    Benets of tight coupled architectures for the integration of GNSS receiver and Vanet transceiver

    Get PDF
    Vehicular adhoc networks (VANETs) are one emerging type of networks that will enable a broad range of applications such as public safety, traffic management, traveler information support and entertain ment. Whether wireless access may be asynchronous or synchronous (respectively as in the upcoming IEEE 8021.11p standard or in some alternative emerging solutions), a synchronization among nodes is required. Moreover, the information on position is needed to let vehicular services work and to correctly forward the messages. As a result, timing and positioning are a strong prerequisite of VANETs. Also the diffusion of enhanced GNSS Navigators paves the way to the integration between GNSS receivers and VANET transceiv ers. This position paper presents an analysis on potential benefits coming from a tightcoupling between the two: the dissertation is meant to show to what extent Intelligent Transportation System (ITS) services could benefit from the proposed architectur

    Resilient Secure Aggregation for Vehicular Networks

    Get PDF
    Innovative ways to use ad hoc networking between vehicles are an active research topic and numerous proposals have been made for applications that make use of it. Due to the bandwidth-limited wireless communication medium, scalability is one crucial factor for the success of these future protocols. Data aggregation is one solution to accomplish such scalability. The goal of aggregation is to semantically combine information and only disseminate this combined information in larger regions. However, the integrity of aggregated information cannot be easily verified anymore. Thus, attacks are possible resulting in lower user acceptance of applications using aggregation or, even worse, in accidents due to false information crafted by a malicious user. Therefore, it is necessary to design novel mechanisms to protect aggregation techniques. However, high vehicle mobility, as well as tight bandwidth constraints, pose strong requirements on the efficiency of such mechanisms. We present new security mechanisms for semantic data aggregation that are suitable for use in vehicular ad hoc networks. Resilience against both malicious users of the system and wrong information due to faulty sensors are taken into consideration. The presented mechanisms are evaluated with respect to their bandwidth overhead and their effectiveness against possible attacks
    • …
    corecore