6,169 research outputs found

    An approach to software maintenance support using a syntactic source code analyser data base : this thesis is presented in a partial fulfillment of the requirements for the degree of Master of Arts in Computer Science at Massey University

    Get PDF
    In this thesis, the development of a software maintenance tool called a syntactic source code analyser (SSCA) is summarised. An SSCA supports other maintenance tools which interact with source code by creating a data base of source information which has links to a formatted version of program source code. The particular SSCA presented handles programs written in a version of COBOL. Before developing a SSCA system, aspects of software maintenance need to be considered. Hence, the scope, definitions and problems of maintenance activities are briefly reviewed and maintenance support through environments, software metrics, and specific tools and techniques examined. A complete maintenance support environment for an application is found to overlap considerably with the application documentation system and shares some tools with development environments. Program source code is also identified as the fundamental documentation of an application and interaction with this source code is a requirement of many maintenance support tools

    Building program understanding tools using visitor combinators

    Get PDF
    Program understanding tools manipulate program representations, such as abstract syntax trees, control-flow graphs, or data-flow graphs. This paper deals with the use of visitor combinators to conduct such manipulations. Visitor combinators are an extension of the well-known visitor design pattern. They are small, reusable classes that carry out specific visiting steps. They can be composed in different constellations to build more complex visitors. We evaluate the expressiveness, reusability, ease of development, and applicability of visitor combinators to the construction of program understanding tools. To that end, we conduct a case study in the use of visitor combinators for control-flow analysis and visualization as used in a commercial Cobol program understanding tool

    C to O-O Translation: Beyond the Easy Stuff

    Full text link
    Can we reuse some of the huge code-base developed in C to take advantage of modern programming language features such as type safety, object-orientation, and contracts? This paper presents a source-to-source translation of C code into Eiffel, a modern object-oriented programming language, and the supporting tool C2Eif. The translation is completely automatic and supports the entire C language (ANSI, as well as many GNU C Compiler extensions, through CIL) as used in practice, including its usage of native system libraries and inlined assembly code. Our experiments show that C2Eif can handle C applications and libraries of significant size (such as vim and libgsl), as well as challenging benchmarks such as the GCC torture tests. The produced Eiffel code is functionally equivalent to the original C code, and takes advantage of some of Eiffel's object-oriented features to produce safe and easy-to-debug translations

    Application Software, Domain-Specific Languages, and Language Design Assistants

    Get PDF
    While application software does the real work, domain-specific languages (DSLs) are tools to help produce it efficiently, and language design assistants in turn are meta-tools to help produce DSLs quickly. DSLs are already in wide use (HTML for web pages, Excel macros for spreadsheet applications, VHDL for hardware design, ...), but many more will be needed for both new as well as existing application domains. Language design assistants to help develop them currently exist only in the basic form of language development systems. After a quick look at domain-specific languages, and especially their relationship to application libraries, we survey existing language development systems and give an outline of future language design assistants.Comment: To be presented at SSGRR 2000, L'Aquila, Ital

    Using automated source code analysis for software evolution

    Get PDF
    Software maintenance is one of the most expensive and time-consuming phases in the software life-cycle. The size and complexity of commercial applications probably present the greatest difficulty that maintainers face when making changes to their applications. As a result of the corresponding loss of understanding, business knowledge encapsulated within the system becomes fragmented, and any changes made as a result of new business initiatives become difficult to implement and hence may mean a loss of business opportunities. This paper outlines an approach to regaining understanding of software which has been used in the Release project at Durham University. This approach involves determining the calling structure of a program in terms of a call-graph, and from this call-graph extracting a dominance tree. Various problems which have been encountered during the construction of tools to perform this task are described

    An overview of decision table literature 1982-1995.

    Get PDF
    This report gives an overview of the literature on decision tables over the past 15 years. As much as possible, for each reference, an author supplied abstract, a number of keywords and a classification are provided. In some cases own comments are added. The purpose of these comments is to show where, how and why decision tables are used. The literature is classified according to application area, theoretical versus practical character, year of publication, country or origin (not necessarily country of publication) and the language of the document. After a description of the scope of the interview, classification results and the classification by topic are presented. The main body of the paper is the ordered list of publications with abstract, classification and comments.

    Transitioning Applications to Semantic Web Services: An Automated Formal Approach

    No full text
    Semantic Web Services have been recognized as a promising technology that exhibits huge commercial potential, and attract significant attention from both industry and the research community. Despite expectations being high, the industrial take-up of Semantic Web Service technologies has been slower than expected. One of the main reasons is that many systems have been developed without considering the potential of the web in integrating services and sharing resources. Without a systematic methodology and proper tool support, the migration from legacy systems to Semantic Web Service-based systems can be a very tedious and expensive process, which carries a definite risk of failure. There is an urgent need to provide strategies which allow the migration of legacy systems to Semantic Web Services platforms, and also tools to support such a strategy. In this paper we propose a methodology for transitioning these applications to Semantic Web Services by taking the advantage of rigorous mathematical methods. Our methodology allows users to migrate their applications to Semantic Web Services platform automatically or semi-automatically
    • ā€¦
    corecore