87 research outputs found

    Data Filtering for Cluster Analysis by â„“0\ell_0-Norm Regularization

    Full text link
    A data filtering method for cluster analysis is proposed, based on minimizing a least squares function with a weighted â„“0\ell_0-norm penalty. To overcome the discontinuity of the objective function, smooth non-convex functions are employed to approximate the â„“0\ell_0-norm. The convergence of the global minimum points of the approximating problems towards global minimum points of the original problem is stated. The proposed method also exploits a suitable technique to choose the penalty parameter. Numerical results on synthetic and real data sets are finally provided, showing how some existing clustering methods can take advantages from the proposed filtering strategy.Comment: Optimization Letters (2017

    A Stochastic Majorize-Minimize Subspace Algorithm for Online Penalized Least Squares Estimation

    Full text link
    Stochastic approximation techniques play an important role in solving many problems encountered in machine learning or adaptive signal processing. In these contexts, the statistics of the data are often unknown a priori or their direct computation is too intensive, and they have thus to be estimated online from the observed signals. For batch optimization of an objective function being the sum of a data fidelity term and a penalization (e.g. a sparsity promoting function), Majorize-Minimize (MM) methods have recently attracted much interest since they are fast, highly flexible, and effective in ensuring convergence. The goal of this paper is to show how these methods can be successfully extended to the case when the data fidelity term corresponds to a least squares criterion and the cost function is replaced by a sequence of stochastic approximations of it. In this context, we propose an online version of an MM subspace algorithm and we study its convergence by using suitable probabilistic tools. Simulation results illustrate the good practical performance of the proposed algorithm associated with a memory gradient subspace, when applied to both non-adaptive and adaptive filter identification problems

    Residual-Sparse Fuzzy CC-Means Clustering Incorporating Morphological Reconstruction and Wavelet frames

    Full text link
    Instead of directly utilizing an observed image including some outliers, noise or intensity inhomogeneity, the use of its ideal value (e.g. noise-free image) has a favorable impact on clustering. Hence, the accurate estimation of the residual (e.g. unknown noise) between the observed image and its ideal value is an important task. To do so, we propose an â„“0\ell_0 regularization-based Fuzzy CC-Means (FCM) algorithm incorporating a morphological reconstruction operation and a tight wavelet frame transform. To achieve a sound trade-off between detail preservation and noise suppression, morphological reconstruction is used to filter an observed image. By combining the observed and filtered images, a weighted sum image is generated. Since a tight wavelet frame system has sparse representations of an image, it is employed to decompose the weighted sum image, thus forming its corresponding feature set. Taking it as data for clustering, we present an improved FCM algorithm by imposing an â„“0\ell_0 regularization term on the residual between the feature set and its ideal value, which implies that the favorable estimation of the residual is obtained and the ideal value participates in clustering. Spatial information is also introduced into clustering since it is naturally encountered in image segmentation. Furthermore, it makes the estimation of the residual more reliable. To further enhance the segmentation effects of the improved FCM algorithm, we also employ the morphological reconstruction to smoothen the labels generated by clustering. Finally, based on the prototypes and smoothed labels, the segmented image is reconstructed by using a tight wavelet frame reconstruction operation. Experimental results reported for synthetic, medical, and color images show that the proposed algorithm is effective and efficient, and outperforms other algorithms.Comment: 12 pages, 11 figur

    Tracking Target Signal Strengths on a Grid using Sparsity

    Get PDF
    Multi-target tracking is mainly challenged by the nonlinearity present in the measurement equation, and the difficulty in fast and accurate data association. To overcome these challenges, the present paper introduces a grid-based model in which the state captures target signal strengths on a known spatial grid (TSSG). This model leads to \emph{linear} state and measurement equations, which bypass data association and can afford state estimation via sparsity-aware Kalman filtering (KF). Leveraging the grid-induced sparsity of the novel model, two types of sparsity-cognizant TSSG-KF trackers are developed: one effects sparsity through â„“1\ell_1-norm regularization, and the other invokes sparsity as an extra measurement. Iterative extended KF and Gauss-Newton algorithms are developed for reduced-complexity tracking, along with accurate error covariance updates for assessing performance of the resultant sparsity-aware state estimators. Based on TSSG state estimates, more informative target position and track estimates can be obtained in a follow-up step, ensuring that track association and position estimation errors do not propagate back into TSSG state estimates. The novel TSSG trackers do not require knowing the number of targets or their signal strengths, and exhibit considerably lower complexity than the benchmark hidden Markov model filter, especially for a large number of targets. Numerical simulations demonstrate that sparsity-cognizant trackers enjoy improved root mean-square error performance at reduced complexity when compared to their sparsity-agnostic counterparts.Comment: Submitted to IEEE Trans. on Signal Processin

    Joint Tensor Factorization and Outlying Slab Suppression with Applications

    Full text link
    We consider factoring low-rank tensors in the presence of outlying slabs. This problem is important in practice, because data collected in many real-world applications, such as speech, fluorescence, and some social network data, fit this paradigm. Prior work tackles this problem by iteratively selecting a fixed number of slabs and fitting, a procedure which may not converge. We formulate this problem from a group-sparsity promoting point of view, and propose an alternating optimization framework to handle the corresponding ℓp\ell_p (0<p≤10<p\leq 1) minimization-based low-rank tensor factorization problem. The proposed algorithm features a similar per-iteration complexity as the plain trilinear alternating least squares (TALS) algorithm. Convergence of the proposed algorithm is also easy to analyze under the framework of alternating optimization and its variants. In addition, regularization and constraints can be easily incorporated to make use of \emph{a priori} information on the latent loading factors. Simulations and real data experiments on blind speech separation, fluorescence data analysis, and social network mining are used to showcase the effectiveness of the proposed algorithm

    Robust Network Topology Inference and Processing of Graph Signals

    Full text link
    The abundance of large and heterogeneous systems is rendering contemporary data more pervasive, intricate, and with a non-regular structure. With classical techniques facing troubles to deal with the irregular (non-Euclidean) domain where the signals are defined, a popular approach at the heart of graph signal processing (GSP) is to: (i) represent the underlying support via a graph and (ii) exploit the topology of this graph to process the signals at hand. In addition to the irregular structure of the signals, another critical limitation is that the observed data is prone to the presence of perturbations, which, in the context of GSP, may affect not only the observed signals but also the topology of the supporting graph. Ignoring the presence of perturbations, along with the couplings between the errors in the signal and the errors in their support, can drastically hinder estimation performance. While many GSP works have looked at the presence of perturbations in the signals, much fewer have looked at the presence of perturbations in the graph, and almost none at their joint effect. While this is not surprising (GSP is a relatively new field), we expect this to change in the upcoming years. Motivated by the previous discussion, the goal of this thesis is to advance toward a robust GSP paradigm where the algorithms are carefully designed to incorporate the influence of perturbations in the graph signals, the graph support, and both. To do so, we consider different types of perturbations, evaluate their disruptive impact on fundamental GSP tasks, and design robust algorithms to address them.Comment: Dissertatio
    • …
    corecore