1,206 research outputs found

    Recursive search-based identification algorithms for the exponential autoregressive time series model with coloured noise

    Get PDF
    This study focuses on the recursive parameter estimation problems for the non-linear exponential autoregressive model with moving average noise (the ExpARMA model for short). By means of the gradient search, an extended stochastic gradient (ESG) algorithm is derived. Considering the difficulty of determining the step-size in the ESG algorithm, a numerical approach is proposed to obtain the optimal step-size. In order to improve the parameter estimation accuracy, the authors employ the multi-innovation identification theory to develop a multi-innovation ESG (MI-ESG) algorithm for the ExpARMA model. Introducing a forgetting factor into the MI-ESG algorithm, the parameter estimation accuracy can be further improved. With an appropriate innovation length and forgetting factor, the variant of the MI-ESG algorithm is effective to identify all the unknown parameters of the ExpARMA model. A simulation example is provided to test the proposed algorithms

    Parameter estimation algorithm for multivariable controlled autoregressive autoregressive moving average systems

    Get PDF
    This paper investigates parameter estimation problems for multivariable controlled autoregressive autoregressive moving average (M-CARARMA) systems. In order to improve the performance of the standard multivariable generalized extended stochastic gradient (M-GESG) algorithm, we derive a partially coupled generalized extended stochastic gradient algorithm by using the auxiliary model. In particular, we divide the identification model into several subsystems based on the hierarchical identification principle and estimate the parameters using the coupled relationship between these subsystems. The simulation results show that the new algorithm can give more accurate parameter estimates of the M-CARARMA system than the M-GESG algorithm

    Gradient-based iterative parameter estimation for bilinear-in-parameter systems using the model decomposition technique

    Get PDF
    The parameter estimation issues of a block-oriented non-linear system that is bilinear in the parameters are studied, i.e. the bilinear-in-parameter system. Using the model decomposition technique, the bilinear-in-parameter model is decomposed into two fictitious submodels: one containing the unknown parameters in the non-linear block and the other containing the unknown parameters in the linear dynamic one and the noise model. Then a gradient-based iterative algorithm is proposed to estimate all the unknown parameters by formulating and minimising two criterion functions. The stochastic gradient algorithms are provided for comparison. The simulation results indicate that the proposed iterative algorithm can give higher parameter estimation accuracy than the stochastic gradient algorithms

    Parameter and State Estimator for State Space Models

    Get PDF
    This paper proposes a parameter and state estimator for canonical state space systems from measured input-output data. The key is to solve the system state from the state equation and to substitute it into the output equation, eliminating the state variables, and the resulting equation contains only the system inputs and outputs, and to derive a least squares parameter identification algorithm. Furthermore, the system states are computed from the estimated parameters and the input-output data. Convergence analysis using the martingale convergence theorem indicates that the parameter estimates converge to their true values. Finally, an illustrative example is provided to show that the proposed algorithm is effective

    State filtering and parameter estimation for two input two output systems with time delay

    Get PDF
    This paper focuses on presenting a new identification algorithm to estimate the parameters and state variables for two-input two-output dynamic systems with time delay based on canonical state space models. First, the related input-output equation is determined and transformed into an identification oriented model, which does not involve in the unmeasurable states, and then a residual based least squares identification algorithm is presented for the estimations. After the parameters being estimated, the system states are subsequently estimated by using the estimated parameters. Through theoretical analysis, the convergence of the algorithm is derived to provide assurance for applicability. Finally, a selected simulation example is given for a meaningful case study to show the effectiveness of the proposed algorithm

    State filtering-based least squares parameter estimation for bilinear systems using the hierarchical identification principle

    Get PDF
    This study presents a combined parameter and state estimation algorithm for a bilinear system described by its observer canonical state-space model based on the hierarchical identification principle. The Kalman filter is known as the best state filter for linear systems, but not applicable for bilinear systems. Thus, a bilinear state observer (BSO) is designed to give the state estimates using the extremum principle. Then a BSO-based recursive least squares (BSO-RLS) algorithm is developed. For comparison with the BSO-RLS algorithm, by dividing the system into three fictitious subsystems on the basis of the decomposition–coordination principle, a BSO-based hierarchical least squares algorithm is proposed to reduce the computation burden. Moreover, a BSO-based forgetting factor recursive least squares algorithm is presented to improve the parameter tracking capability. Finally, a numerical example illustrates the effectiveness of the proposed algorithms

    Bounded Influence Approaches to Constrained Mixed Vector Autoregressive Models

    Get PDF
    The proliferation of many clinical studies obtaining multiple biophysical signals from several individuals repeatedly in time is increasingly recognized, a recognition generating growth in statistical models that analyze cross-sectional time series data. In general, these statistical models try to answer two questions: (i) intra-individual dynamics of the response and its relation to some covariates; and, (ii) how this dynamics can be aggregated consistently in a group. In response to the first question, we propose a covariate-adjusted constrained Vector Autoregressive model, a technique similar to the STARMAX model (Stoffer, JASA 81, 762-772), to describe serial dependence of observations. In this way, the number of parameters to be estimated is kept minimal while offering flexibility for the model to explore higher order dependence. In response to (ii), we use mixed effects analysis that accommodates modelling of heterogeneity among cross-sections arising from covariate effects that vary from one cross-section to another. Although estimation of the model can proceed using standard maximum likelihood techniques, we believed it is advantageous to use bounded influence procedures in the modelling (such as choosing constraints) and parameter estimation so that the effects of outliers can be controlled. In particular, we use M-estimation with a redescending bounding function because its influence function is always bounded. Furthermore, assuming consistency, this influence function is useful to obtain the limiting distribution of the estimates. However, this distribution may not necessarily yield accurate inference in the presence of contamination as the actual asymptotic distribution might have wider tails. This led us to investigate bootstrap approximation techniques. A sampling scheme based on IID innovations is modified to accommodate the cross-sectional structure of the data. Then the M-estimation is applied to each bootstrap sample naively to obtain the asymptotic distribution of the estimates.We apply these strategies to the extracted BOLD activation from several regions of the brain from a group of individuals to describe joint dynamic behavior between these locations. We used simulated data with both innovation and additive outliers to test whether the estimation procedure is accurate despite contamination

    Hierarchical gradient- and least squares-based iterative algorithms for input nonlinear output-error systems using the key term separation

    Get PDF
    This paper considers the parameter identification problems of the input nonlinear output-error (IN-OE) systems, that is the Hammerstein output-error systems. In order to overcome the excessive calculation amount of the over-parameterization method of the IN-OE systems. Through applying the hierarchial identification principle and decomposing the IN-OE system into three subsystems with a smaller number of parameters, we present the key term separation auxiliary model hierarchical gradient-based iterative algorithm and the key term separation auxiliary model hierarchical least squares-based iterative algorithm, which are called the key term separation auxiliary model three-stage gradient-based iterative algorithm and the key term separation auxiliary model three-stage least squares-based iterative algorithm. The comparison of the calculation amount and the simulation analysis indicate that the proposed algorithms are effective. (c) 2021 The Franklin Institute. Published by Elsevier Ltd. All rights reserved

    Development and identification of hierarchical nonlinear mixed effects models for the analysis of dynamic systems: identification and application of hierarchical nonlinear mixed effects models for the determination of steady-state and dynamic torque responses of an SI engine

    Get PDF
    Multi-level or hierarchical models present various features for dealing with data grouped at several levels. The majority of applications of hierarchical models use clustered data that is static in nature and collected over a long period of time. The purpose of this study is investigating hierarchical models for application with highly dynamic systems. Steady-state data are conventionally employed for engine torque mapping purposes. The data takes much time to collect and the dynamics of the system are routinely ignored. This valuable information could be used for better control of the system.In this study, an innovative transient spark-sweep approach is developed for collecting dynamic torque data more efficiently. The means of data collection implies a structure for which a multi-level model is best suited. A multi-model augmented D-optimal design is created, and the experimental data collected. Spark excitation is applied at speed/load points using Amplitude Modulated Pseudo Random Signal (AMPRS), and the torque response over the operating space is thus obtained. Conditional first-order linearization is used within the identification process for determining the hierarchical model parameters. The level-1 Nonlinear Auto Regressive eXogenous (NARX) models are separately determined using an Iterative Generalized Least Square (IGLS) method and the results are employed for initialisation of the covariance matrix and the model level-2 parameters. A novel gradient optimiser was established to facilitate the dynamic hierarchical model identification. Additionally, the uncertainty associated with model selection was mitigated using a multi-model approach. The model identified is evaluated and compared with experimental dynamic and steady-state data. It shows behaviour, both dynamic and steady state, providing prediction over a wider extrapolated spark range than conventional approaches. The new approach is eight time faster than current state-of-the-art approaches.</div
    • …
    corecore