6,442 research outputs found

    Vision-Based Lane-Changing Behavior Detection Using Deep Residual Neural Network

    Get PDF
    Accurate lane localization and lane change detection are crucial in advanced driver assistance systems and autonomous driving systems for safer and more efficient trajectory planning. Conventional localization devices such as Global Positioning System only provide road-level resolution for car navigation, which is incompetent to assist in lane-level decision making. The state of art technique for lane localization is to use Light Detection and Ranging sensors to correct the global localization error and achieve centimeter-level accuracy, but the real-time implementation and popularization for LiDAR is still limited by its computational burden and current cost. As a cost-effective alternative, vision-based lane change detection has been highly regarded for affordable autonomous vehicles to support lane-level localization. A deep learning-based computer vision system is developed to detect the lane change behavior using the images captured by a front-view camera mounted on the vehicle and data from the inertial measurement unit for highway driving. Testing results on real-world driving data have shown that the proposed method is robust with real-time working ability and could achieve around 87% lane change detection accuracy. Compared to the average human reaction to visual stimuli, the proposed computer vision system works 9 times faster, which makes it capable of helping make life-saving decisions in time

    AN APPROACH OF TRAFFIC FLOW PREDICTION USING ARIMA MODEL WITH FUZZY WAVELET TRANSFORM

    Get PDF
    It is essential for intelligent transportation systems to be capable of producing an accurate forecast of traffic flow in both the short and long terms. However, the counting datasets of traffic volume are non-stationary time series, which are integrally noisy. As a result, the accuracy of traffic prediction carried out on such unrefined data is reduced by the arbitrary components. A prior study shows that Box-Jenkins’ Autoregressive Integrated Moving Average (ARIMA) models convey demand of noise-free dataset for model construction. Therefore, this study proposes to overcome the noise issue by using a hybrid approach that combines the ARIMA model with fuzzy wavelet transform. In this approach, fuzzy rules are developed to categorize traffic datasets according to influencing factors such as the time of a day, the season of a year, and weather conditions. As the input of linear data series for ARIMA model needs to be converted into linear time series for traffic flow prediction, the discrete wavelet transform is applied to help separating the nonlinear and linear part of the time series along with denoised time series traffic data

    From statistical- to machine learning-based network traffic prediction

    Get PDF
    Nowadays, due to the exponential and continuous expansion of new paradigms such as Internet of Things (IoT), Internet of Vehicles (IoV) and 6G, the world is witnessing a tremendous and sharp increase of network traffic. In such large-scale, heterogeneous, and complex networks, the volume of transferred data, as big data, is considered a challenge causing different networking inefficiencies. To overcome these challenges, various techniques are introduced to monitor the performance of networks, called Network Traffic Monitoring and Analysis (NTMA). Network Traffic Prediction (NTP) is a significant subfield of NTMA which is mainly focused on predicting the future of network load and its behavior. NTP techniques can generally be realized in two ways, that is, statistical- and Machine Learning (ML)-based. In this paper, we provide a study on existing NTP techniques through reviewing, investigating, and classifying the recent relevant works conducted in this field. Additionally, we discuss the challenges and future directions of NTP showing that how ML and statistical techniques can be used to solve challenges of NTP.publishedVersio
    • …
    corecore