28,643 research outputs found

    Data Dissemination Performance in Large-Scale Sensor Networks

    Full text link
    As the use of wireless sensor networks increases, the need for (energy-)efficient and reliable broadcasting algorithms grows. Ideally, a broadcasting algorithm should have the ability to quickly disseminate data, while keeping the number of transmissions low. In this paper we develop a model describing the message count in large-scale wireless sensor networks. We focus our attention on the popular Trickle algorithm, which has been proposed as a suitable communication protocol for code maintenance and propagation in wireless sensor networks. Besides providing a mathematical analysis of the algorithm, we propose a generalized version of Trickle, with an additional parameter defining the length of a listen-only period. This generalization proves to be useful for optimizing the design and usage of the algorithm. For single-cell networks we show how the message count increases with the size of the network and how this depends on the Trickle parameters. Furthermore, we derive distributions of inter-broadcasting times and investigate their asymptotic behavior. Our results prove conjectures made in the literature concerning the effect of a listen-only period. Additionally, we develop an approximation for the expected number of transmissions in multi-cell networks. All results are validated by simulations

    Efficient multi-resolution data dissemination in wireless sensor networks

    Get PDF
    A large-scale distributed wireless sensor network is composed of a large collection of small low-power, unattended sensing devices equipped with limited memory, processors, and short-range wireless communication. The network is capable of controlling and monitoring ambient conditions, such as temperature, movement, sound, light and others, and thus enable smart environments. Energy efficient data dissemination is one of the fundamental services in large-scale wireless sensor networks. Based on the study of the data dissemination problem, we propose two efficient data dissemination schemes for two categories of applications in large-scale wireless sensor networks. In addition, our schemes provide spatial-based multi-resolution data dissemination for some applications to achieve further energy efficiency. Analysis and simulation results are given to show the performance of our schemes in comparison with current techniques

    RRP: A Register Mechanism Routing Protocol in Wireless Sensor Networks

    Get PDF
    [[abstract]]Wireless Sensor Networks (WSNs) are event-based systems that rely on the collective effort of several micro-sensor nodes. Reliable event detection at the sink is based on collective information provided by source nodes. When data needs to be gathered from a selected set of nodes and transmit to sink in the network. However the sensor nodes often face the critical challenge among all is the constraint on limited battery energy. Therefore, how to minimize the energy consumption while maintaining an extended network lifetime becomes the most critical issue in the WSNs. We present a routing protocol in cluster-based WSNs called the Register mechanism Routing Protocol (RRP). The RRP protocol is attempted to resolve the above issue. The performance of RRP is then compared to routing protocol such as HCDD (Hierarchical Cluster-based Data Dissemination in WSNs) and TTDD (Two-tier Data Dissemination Model for Large scale WSNs). The simulation results demonstrate that RRP may reach energy savings up to 21%~50%.[[notice]]補正完畢[[incitationindex]]EI[[booktype]]紙

    Effective Node Clustering and Data Dissemination In Large-Scale Wireless Sensor Networks

    Get PDF
    The denseness and random distribution of large-scale WSNs makes it quite difficult to replace or recharge nodes. Energy efficiency and management is a major design goal in these networks. In addition, reliability and scalability are two other major goals that have been identified by researchers as necessary in order to further expand the deployment of such networks for their use in various applications. This thesis aims to provide an energy efficient and effective node clustering and data dissemination algorithm in large-scale wireless sensor networks. In the area of clustering, the proposed research prolongs the lifetime of the network by saving energy through the use of node ranking to elect cluster heads, contrary to other existing cluster-based work that selects a random node or the node with the highest energy at a particular time instance as the new cluster head. Moreover, a global knowledge strategy is used to maintain a level of universal awareness of existing nodes in the subject area and to avoid the problem of disconnected or forgotten nodes. In the area of data dissemination, the aim of this research is to effectively manage the data collection by developing an efficient data collection scheme using a ferry node and applying a selective duty cycle strategy to the sensor nodes. Depending on the application, mobile ferries can be used for collecting data in a WSN, especially those that are large in scale, with delay tolerant applications. Unlike data collection via multi-hop forwarding among the sensing nodes, ferries travel across the sensing field to collect data. A ferry-based approach thus eliminates, or minimizes, the need for the multi-hop forwarding of data, and as a result, energy consumption at the nodes will be significantly reduced. This is especially true for nodes that are near the base station as they are used by other nodes to forward data to the base station. MATLAB is used to design, simulate and evaluate the proposed work against the work that has already been done by others by using various performance criteria

    Pheromone-based In-Network Processing for wireless sensor network monitoring systems

    Get PDF
    Monitoring spatio-temporal continuous fields using wireless sensor networks (WSNs) has emerged as a novel solution. An efficient data-driven routing mechanism for sensor querying and information gathering in large-scale WSNs is a challenging problem. In particular, we consider the case of how to query the sensor network information with the minimum energy cost in scenarios where a small subset of sensor nodes has relevant readings. In order to deal with this problem, we propose a Pheromone-based In-Network Processing (PhINP) mechanism. The proposal takes advantages of both a pheromone-based iterative strategy to direct queries towards nodes with relevant information and query- and response-based in-network filtering to reduce the number of active nodes. Additionally, we apply reinforcement learning to improve the performance. The main contribution of this work is the proposal of a simple and efficient mechanism for information discovery and gathering. It can reduce the messages exchanged in the network, by allowing some error, in order to maximize the network lifetime. We demonstrate by extensive simulations that using PhINP mechanism the query dissemination cost can be reduced by approximately 60% over flooding, with an error below 1%, applying the same in-network filtering strategy.Fil: Riva, Guillermo Gaston. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; Argentina. Universidad Tecnológica Nacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; ArgentinaFil: Finochietto, Jorge Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Estudios Avanzados en Ingeniería y Tecnología. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto de Estudios Avanzados en Ingeniería y Tecnología; Argentin

    GCP: Gossip-based Code Propagation for Large-scale Mobile Wireless Sensor Networks

    Get PDF
    Wireless sensor networks (WSN) have recently received an increasing interest. They are now expected to be deployed for long periods of time, thus requiring software updates. Updating the software code automatically on a huge number of sensors is a tremendous task, as ''by hand'' updates can obviously not be considered, especially when all participating sensors are embedded on mobile entities. In this paper, we investigate an approach to automatically update software in mobile sensor-based application when no localization mechanism is available. We leverage the peer-to-peer cooperation paradigm to achieve a good trade-off between reliability and scalability of code propagation. More specifically, we present the design and evaluation of GCP ({\emph Gossip-based Code Propagation}), a distributed software update algorithm for mobile wireless sensor networks. GCP relies on two different mechanisms (piggy-backing and forwarding control) to improve significantly the load balance without sacrificing on the propagation speed. We compare GCP against traditional dissemination approaches. Simulation results based on both synthetic and realistic workloads show that GCP achieves a good convergence speed while balancing the load evenly between sensors
    corecore