2,972 research outputs found

    Research and Education in Computational Science and Engineering

    Get PDF
    Over the past two decades the field of computational science and engineering (CSE) has penetrated both basic and applied research in academia, industry, and laboratories to advance discovery, optimize systems, support decision-makers, and educate the scientific and engineering workforce. Informed by centuries of theory and experiment, CSE performs computational experiments to answer questions that neither theory nor experiment alone is equipped to answer. CSE provides scientists and engineers of all persuasions with algorithmic inventions and software systems that transcend disciplines and scales. Carried on a wave of digital technology, CSE brings the power of parallelism to bear on troves of data. Mathematics-based advanced computing has become a prevalent means of discovery and innovation in essentially all areas of science, engineering, technology, and society; and the CSE community is at the core of this transformation. However, a combination of disruptive developments---including the architectural complexity of extreme-scale computing, the data revolution that engulfs the planet, and the specialization required to follow the applications to new frontiers---is redefining the scope and reach of the CSE endeavor. This report describes the rapid expansion of CSE and the challenges to sustaining its bold advances. The report also presents strategies and directions for CSE research and education for the next decade.Comment: Major revision, to appear in SIAM Revie

    Knowledge-based variable selection for learning rules from proteomic data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The incorporation of biological knowledge can enhance the analysis of biomedical data. We present a novel method that uses a proteomic knowledge base to enhance the performance of a rule-learning algorithm in identifying putative biomarkers of disease from high-dimensional proteomic mass spectral data. In particular, we use the Empirical Proteomics Ontology Knowledge Base (EPO-KB) that contains previously identified and validated proteomic biomarkers to select <it>m/z</it>s in a proteomic dataset prior to analysis to increase performance.</p> <p>Results</p> <p>We show that using EPO-KB as a pre-processing method, specifically selecting all biomarkers found only in the biofluid of the proteomic dataset, reduces the dimensionality by 95% and provides a statistically significantly greater increase in performance over no variable selection and random variable selection.</p> <p>Conclusion</p> <p>Knowledge-based variable selection even with a sparsely-populated resource such as the EPO-KB increases overall performance of rule-learning for disease classification from high-dimensional proteomic mass spectra.</p

    MiniTUBA: a Web-Based Dynamic Bayesian Network Analysis System

    Get PDF
    • …
    corecore