99 research outputs found

    An Overview of Infrared Remote Sensing of Volcanic Activity

    Get PDF
    Volcanic activity consists of the transfer of heat from the interior of the Earth to the surface. The characteristics of the heat emitted relate directly to the geological processes underway and can be observed from space, using the thermal sensors present on many Earth-orbiting satellites. For over 50 years, scientists have utilised such sensors and are now able to determine the sort of volcanic activity being displayed without hazardous and costly field expeditions. This review will describe the theoretical basis of the discipline and then discuss the sensors available and the history of their use. Challenges and opportunities for future developments are then discussed

    ASTER, ALI and Hyperion sensors data for lithological mapping and ore minerals exploration

    Get PDF

    Overview of Intercalibration of Satellite Instruments

    Get PDF
    Intercalibration of satellite instruments is critical for detection and quantification of changes in the Earth’s environment, weather forecasting, understanding climate processes, and monitoring climate and land cover change. These applications use data from many satellites; for the data to be interoperable, the instruments must be cross-calibrated. To meet the stringent needs of such applications, instruments must provide reliable, accurate, and consistent measurements over time. Robust techniques are required to ensure that observations from different instruments can be normalized to a common scale that the community agrees on. The long-term reliability of this process needs to be sustained in accordance with established reference standards and best practices. Furthermore, establishing physical meaning to the information through robust Système International d’unités traceable calibration and validation (Cal/Val) is essential to fully understand the parameters under observation. The processes of calibration, correction, stabilitymonitoring, and quality assurance need to be underpinned and evidenced by comparison with “peer instruments” and, ideally, highly calibrated in-orbit reference instruments. Intercalibration between instruments is a central pillar of the Cal/Val strategies of many national and international satellite remote sensing organizations. Intercalibration techniques as outlined in this paper not only provide a practical means of identifying and correcting relative biases in radiometric calibration between instruments but also enable potential data gaps between measurement records in a critical time series to be bridged. Use of a robust set of internationally agreed upon and coordinated intercalibration techniques will lead to significant improvement in the consistency between satellite instruments and facilitate accurate monitoring of the Earth’s climate at uncertainty levels needed to detect and attribute the mechanisms of change. This paper summarizes the state-of-the-art of postlaunch radiometric calibration of remote sensing satellite instruments through intercalibration

    Overview of Intercalibration of Satellite Instruments

    Get PDF
    Intercalibration of satellite instruments is critical for detection and quantification of changes in the Earth’s environment, weather forecasting, understanding climate processes, and monitoring climate and land cover change. These applications use data from many satellites; for the data to be interoperable, the instruments must be cross-calibrated. To meet the stringent needs of such applications, instruments must provide reliable, accurate, and consistent measurements over time. Robust techniques are required to ensure that observations from different instruments can be normalized to a common scale that the community agrees on. The long-term reliability of this process needs to be sustained in accordance with established reference standards and best practices. Furthermore, establishing physical meaning to the information through robust Système International d’unités traceable calibration and validation (Cal/Val) is essential to fully understand the parameters under observation. The processes of calibration, correction, stabilitymonitoring, and quality assurance need to be underpinned and evidenced by comparison with “peer instruments” and, ideally, highly calibrated in-orbit reference instruments. Intercalibration between instruments is a central pillar of the Cal/Val strategies of many national and international satellite remote sensing organizations. Intercalibration techniques as outlined in this paper not only provide a practical means of identifying and correcting relative biases in radiometric calibration between instruments but also enable potential data gaps between measurement records in a critical time series to be bridged. Use of a robust set of internationally agreed upon and coordinated intercalibration techniques will lead to significant improvement in the consistency between satellite instruments and facilitate accurate monitoring of the Earth’s climate at uncertainty levels needed to detect and attribute the mechanisms of change. This paper summarizes the state-of-the-art of postlaunch radiometric calibration of remote sensing satellite instruments through intercalibration

    Classification of North Africa for Use as an Extended Pseudo Invariant Calibration Sites (Epics) for Radiometric Calibration and Stability Monitoring of Optical Satellite Sensors

    Get PDF
    An increasing number of Earth-observing satellite sensors are being launched to meet the insatiable demand for timely and accurate data to help the understanding of the Earth’s complex systems and to monitor significant changes to them. The quality of data recorded by these sensors is a primary concern, as it critically depends on accurate radiometric calibration for each sensor. Pseudo Invariant Calibration Sites (PICS) have been extensively used for radiometric calibration and temporal stability monitoring of optical satellite sensors. Due to limited knowledge about the radiometric stability of North Africa, only a limited number of sites in the region are used for this purpose. This work presents an automated approach to classify North Africa for its potential use as an extended PICS (EPICS) covering vast portions of the continent. An unsupervised classification algorithm identified 19 “clusters” representing distinct land surface types; three clusters were identified with spatial uncertainties within approximately 5% in the shorter wavelength bands and 3% in the longer wavelength bands. A key advantage of the cluster approach is that large numbers of pixels are aggregated into contiguous homogeneous regions sufficiently distributed across the continent to allow multiple imaging opportunities per day, as opposed to imaging a typical PICS once during the sensor’s revisit period. In addition, this work proposes a technique to generate a representative hyperspectral profile for these clusters, as the hyperspectral profile of these identified clusters are mandatory in order to utilize them for performing cross-calibration of optical satellite sensors. The technique was used to generate the profile for the cluster containing the largest number of aggregated pixels. The resulting profile was found to have temporal uncertainties within 5% across all the spectral regions. Overall, this technique shows great potential for generation of representative hyperspectral profiles for any North African cluster, which could allow the use of the entire North Africa Saharan region as an extended PICS (EPICS) dataset for sensor cross-calibration. Furthermore, this work investigates the performance of extended pseudo-invariant calibration sites (EPICS) in cross-calibration for one of Shrestha’s clusters, Cluster 13, by comparing its results to those obtained from a traditional PICS-based cross-calibration. The use of EPICS clusters can significantly increase the number of cross-calibration opportunities within a much shorter time period. The cross-calibration gain ratio estimated using a cluster-based approach had a similar accuracy to the cross-calibration gain derived from region of interest (ROI)-based approaches. The cluster-based cross-calibration gain ratio is consistent within approximately 2% of the ROI-based cross-calibration gain ratio for all bands except for the coastal and shortwave-infrared (SWIR) 2 bands. These results show that image data from any region within Cluster 13 can be used for sensor crosscalibration. Eventually, North Africa can be used a continental scale PICS

    Advanced Image Processing for NASA Applications

    Get PDF
    The future of space exploration will involve cooperating fleets of spacecraft or sensor webs geared towards coordinated and optimal observation of Earth Science phenomena. The main advantage of such systems is to utilize multiple viewing angles as well as multiple spatial and spectral resolutions of sensors carried on multiple spacecraft but acting collaboratively as a single system. Within this framework, our research focuses on all areas related to sensing in collaborative environments, which means systems utilizing intracommunicating spatially distributed sensor pods or crafts being deployed to monitor or explore different environments. This talk will describe the general concept of sensing in collaborative environments, will give a brief overview of several technologies developed at NASA Goddard Space Flight Center in this area, and then will concentrate on specific image processing research related to that domain, specifically image registration and image fusion
    • …
    corecore