9,258 research outputs found

    Efficient Data Compression with Error Bound Guarantee in Wireless Sensor Networks

    Get PDF
    We present a data compression and dimensionality reduction scheme for data fusion and aggregation applications to prevent data congestion and reduce energy consumption at network connecting points such as cluster heads and gateways. Our in-network approach can be easily tuned to analyze the data temporal or spatial correlation using an unsupervised neural network scheme, namely the autoencoders. In particular, our algorithm extracts intrinsic data features from previously collected historical samples to transform the raw data into a low dimensional representation. Moreover, the proposed framework provides an error bound guarantee mechanism. We evaluate the proposed solution using real-world data sets and compare it with traditional methods for temporal and spatial data compression. The experimental validation reveals that our approach outperforms several existing wireless sensor network's data compression methods in terms of compression efficiency and signal reconstruction.Comment: ACM MSWiM 201

    Distributed Regression in Sensor Networks: Training Distributively with Alternating Projections

    Full text link
    Wireless sensor networks (WSNs) have attracted considerable attention in recent years and motivate a host of new challenges for distributed signal processing. The problem of distributed or decentralized estimation has often been considered in the context of parametric models. However, the success of parametric methods is limited by the appropriateness of the strong statistical assumptions made by the models. In this paper, a more flexible nonparametric model for distributed regression is considered that is applicable in a variety of WSN applications including field estimation. Here, starting with the standard regularized kernel least-squares estimator, a message-passing algorithm for distributed estimation in WSNs is derived. The algorithm can be viewed as an instantiation of the successive orthogonal projection (SOP) algorithm. Various practical aspects of the algorithm are discussed and several numerical simulations validate the potential of the approach.Comment: To appear in the Proceedings of the SPIE Conference on Advanced Signal Processing Algorithms, Architectures and Implementations XV, San Diego, CA, July 31 - August 4, 200

    A Survey on Wireless Sensor Network Security

    Full text link
    Wireless sensor networks (WSNs) have recently attracted a lot of interest in the research community due their wide range of applications. Due to distributed nature of these networks and their deployment in remote areas, these networks are vulnerable to numerous security threats that can adversely affect their proper functioning. This problem is more critical if the network is deployed for some mission-critical applications such as in a tactical battlefield. Random failure of nodes is also very likely in real-life deployment scenarios. Due to resource constraints in the sensor nodes, traditional security mechanisms with large overhead of computation and communication are infeasible in WSNs. Security in sensor networks is, therefore, a particularly challenging task. This paper discusses the current state of the art in security mechanisms for WSNs. Various types of attacks are discussed and their countermeasures presented. A brief discussion on the future direction of research in WSN security is also included.Comment: 24 pages, 4 figures, 2 table

    A framework for cloud-based healthcare services to monitor noncommunicable diseases patient

    Full text link
    Monitoring patients who have noncommunicable diseases is a big challenge. These illnesses require a continuous monitoring that leads to high cost for patients\u27 healthcare. Several solutions proposed reducing the impact of these diseases in terms of economic with respect to quality of services. One of the best solutions is mobile healthcare, where patients do not need to be hospitalized under supervision of caregivers. This paper presents a new hybrid framework based on mobile multimedia cloud that is scalable and efficient and provides cost-effective monitoring solution for noncommunicable disease patient. In order to validate the effectiveness of the framework, we also propose a novel evaluation model based on Analytical Hierarchy Process (AHP), which incorporates some criteria from multiple decision makers in the context of healthcare monitoring applications. Using the proposed evaluation model, we analyzed three possible frameworks (proposed hybrid framework, mobile, and multimedia frameworks) in terms of their applicability in the real healthcare environment

    Machine Learning in Wireless Sensor Networks: Algorithms, Strategies, and Applications

    Get PDF
    Wireless sensor networks monitor dynamic environments that change rapidly over time. This dynamic behavior is either caused by external factors or initiated by the system designers themselves. To adapt to such conditions, sensor networks often adopt machine learning techniques to eliminate the need for unnecessary redesign. Machine learning also inspires many practical solutions that maximize resource utilization and prolong the lifespan of the network. In this paper, we present an extensive literature review over the period 2002-2013 of machine learning methods that were used to address common issues in wireless sensor networks (WSNs). The advantages and disadvantages of each proposed algorithm are evaluated against the corresponding problem. We also provide a comparative guide to aid WSN designers in developing suitable machine learning solutions for their specific application challenges.Comment: Accepted for publication in IEEE Communications Surveys and Tutorial

    Over-the-air software updates in the internet of things : an overview of key principles

    Get PDF
    Due to the fast pace at which IoT is evolving, there is an increasing need to support over-theair software updates for security updates, bug fixes, and software extensions. To this end, multiple over-the-air techniques have been proposed, each covering a specific aspect of the update process, such as (partial) code updates, data dissemination, and security. However, each technique introduces overhead, especially in terms of energy consumption, thereby impacting the operational lifetime of the battery constrained devices. Until now, a comprehensive overview describing the different update steps and quantifying the impact of each step is missing in the scientific literature, making it hard to assess the overall feasibility of an over-the-air update. To remedy this, our article analyzes which parts of an IoT operating system are most updated after device deployment, proposes a step-by-step approach to integrate software updates in IoT solutions, and quantifies the energy cost of each of the involved steps. The results show that besides the obvious dissemination cost, other phases such as security also introduce a significant overhead. For instance, a typical firmware update requires 135.026 mJ, of which the main portions are data dissemination (63.11 percent) and encryption (5.29 percent). However, when modular updates are used instead, the energy cost (e.g., for a MAC update) is reduced to 26.743 mJ (48.69 percent for data dissemination and 26.47 percent for encryption)
    corecore