6,700 research outputs found

    Distance dependent extensions of the Chinese restaurant process

    Get PDF
    In this paper we consider the clustering of text documents using the Chinese Restau- rant Process (CRP) and extensions that take time-correlations into account. To this pur- pose, we implement and test the Distance Dependent Chinese Restaurant Process (DD- CRP) for mixture models on both generated and real-world data. We also propose and im- plement a novel clustering algorithm, the Av- eraged Distance Dependent Chinese Restau- rant Process (ADDCRP), to model time- correlations, that is faster per iteration and attains similar performance as the fully dis- tance dependent CRP

    Distance Dependent Chinese Restaurant Processes

    Full text link
    We develop the distance dependent Chinese restaurant process (CRP), a flexible class of distributions over partitions that allows for non-exchangeability. This class can be used to model many kinds of dependencies between data in infinite clustering models, including dependencies across time or space. We examine the properties of the distance dependent CRP, discuss its connections to Bayesian nonparametric mixture models, and derive a Gibbs sampler for both observed and mixture settings. We study its performance with three text corpora. We show that relaxing the assumption of exchangeability with distance dependent CRPs can provide a better fit to sequential data. We also show its alternative formulation of the traditional CRP leads to a faster-mixing Gibbs sampling algorithm than the one based on the original formulation

    A Tutorial on Bayesian Nonparametric Models

    Full text link
    A key problem in statistical modeling is model selection, how to choose a model at an appropriate level of complexity. This problem appears in many settings, most prominently in choosing the number ofclusters in mixture models or the number of factors in factor analysis. In this tutorial we describe Bayesian nonparametric methods, a class of methods that side-steps this issue by allowing the data to determine the complexity of the model. This tutorial is a high-level introduction to Bayesian nonparametric methods and contains several examples of their application.Comment: 28 pages, 8 figure

    The Greedy Dirichlet Process Filter - An Online Clustering Multi-Target Tracker

    Full text link
    Reliable collision avoidance is one of the main requirements for autonomous driving. Hence, it is important to correctly estimate the states of an unknown number of static and dynamic objects in real-time. Here, data association is a major challenge for every multi-target tracker. We propose a novel multi-target tracker called Greedy Dirichlet Process Filter (GDPF) based on the non-parametric Bayesian model called Dirichlet Processes and the fast posterior computation algorithm Sequential Updating and Greedy Search (SUGS). By adding a temporal dependence we get a real-time capable tracking framework without the need of a previous clustering or data association step. Real-world tests show that GDPF outperforms other multi-target tracker in terms of accuracy and stability
    corecore