7,289 research outputs found

    Statistical Multiplexing Gain Analysis of Heterogeneous Virtual Base Station Pools in Cloud Radio Access Networks

    Full text link
    Cloud radio access network (C-RAN) is proposed recently to reduce network cost, enable cooperative communications, and increase system flexibility through centralized baseband processing. By pooling multiple virtual base stations (VBSs) and consolidating their stochastic computational tasks, the overall computational resource can be reduced, achieving the so-called statistical multiplexing gain. In this paper, we evaluate the statistical multiplexing gain of VBS pools using a multi-dimensional Markov model, which captures the session-level dynamics and the constraints imposed by both radio and computational resources. Based on this model, we derive a recursive formula for the blocking probability and also a closed-form approximation for it in large pools. These formulas are then used to derive the session-level statistical multiplexing gain of both real-time and delay-tolerant traffic. Numerical results show that VBS pools can achieve more than 75% of the maximum pooling gain with 50 VBSs, but further convergence to the upper bound (large-pool limit) is slow because of the quickly diminishing marginal pooling gain, which is inversely proportional to a factor between the one-half and three-fourth power of the pool size. We also find that the pooling gain is more evident under light traffic load and stringent Quality of Service (QoS) requirement.Comment: Accepted by IEEE Transaction on Wireless Communication

    Statistical Anomaly Detection via Composite Hypothesis Testing for Markov Models

    Full text link
    Under Markovian assumptions, we leverage a Central Limit Theorem (CLT) for the empirical measure in the test statistic of the composite hypothesis Hoeffding test so as to establish weak convergence results for the test statistic, and, thereby, derive a new estimator for the threshold needed by the test. We first show the advantages of our estimator over an existing estimator by conducting extensive numerical experiments. We find that our estimator controls better for false alarms while maintaining satisfactory detection probabilities. We then apply the Hoeffding test with our threshold estimator to detecting anomalies in two distinct applications domains: one in communication networks and the other in transportation networks. The former application seeks to enhance cyber security and the latter aims at building smarter transportation systems in cities.Comment: Preprint submitted to the IEEE Transactions on Signal Processin

    Spatial Birth-Death Wireless Networks

    Full text link
    We propose and study a novel continuous space-time model for wireless networks which takes into account the stochastic interactions in both space through interference and in time due to randomness in traffic. Our model consists of an interacting particle birth-death dynamics incorporating information-theoretic spectrum sharing. Roughly speaking, particles (or more generally wireless links) arrive according to a Poisson Point Process on space-time, and stay for a duration governed by the local configuration of points present and then exit the network after completion of a file transfer. We analyze this particle dynamics to derive an explicit condition for time ergodicity (i.e. stability) which is tight. We also prove that when the dynamics is ergodic, the steady-state point process of links (or particles) exhibits a form statistical clustering. Based on the clustering, we propose a conjecture which we leverage to derive approximations, bounds and asymptotics on performance characteristics such as delay and mean number of links per unit-space in the stationary regime. The mathematical analysis is combined with discrete event simulation to study the performance of this type of networks.Comment: Submitted to IEEE Transactions on Information Theory. Corrected some typos from an earlier version and made some minor modifications to the introductio

    Distortion-Aware Concurrent Multipath Transfer for Mobile Video Streaming in Heterogeneous Wireless Networks

    Full text link
    The massive proliferation of wireless infrastructures with complementary characteristics prompts the bandwidth aggregation for Concurrent Multipath Transfer (CMT) over heterogeneous access networks. Stream Control Transmission Protocol (SCTP) is the standard transport-layer solution to enable CMT in multihomed communication environments. However, delivering high-quality streaming video with the existing CMT solutions still remains problematic due to the stringent QoS (Quality of Service) requirements and path asymmetry in heterogeneous wireless networks. In this paper, we advance the state of the art by introducing video distortion into the decision process of multipath data transfer. The proposed Distortion-Aware Concurrent Multipath Transfer (CMT-DA) solution includes three phases: 1) per-path status estimation and congestion control; 2) quality-optimal video flow rate allocation; 3) delay and loss controlled data retransmission. The term `flow rate allocation' indicates dynamically picking appropriate access networks and assigning the transmission rates. We analytically formulate the data distribution over multiple communication paths to minimize the end-to-end video distortion and derive the solution based on the utility maximization theory. The performance of the proposed CMT-DA is evaluated through extensive semi-physical emulations in Exata involving H.264 video streaming. Experimental results show that CMT-DA outperforms the reference schemes in terms of video PSNR (Peak Signal-to-Noise Ratio), goodput, and inter-packet delay.Comment: This paper has already accepted for publication in IEEE Transactions on Mobile Computing on Jun, 23rd, 201

    Probabilistic Program Equivalence for NetKAT

    Full text link
    We tackle the problem of deciding whether two probabilistic programs are equivalent in Probabilistic NetKAT, a formal language for specifying and reasoning about the behavior of packet-switched networks. We show that the problem is decidable for the history-free fragment of the language by developing an effective decision procedure based on stochastic matrices. The main challenge lies in reasoning about iteration, which we address by designing an encoding of the program semantics as a finite-state absorbing Markov chain, whose limiting distribution can be computed exactly. In an extended case study on a real-world data center network, we automatically verify various quantitative properties of interest, including resilience in the presence of failures, by analyzing the Markov chain semantics

    Safe Reinforcement Learning with Scene Decomposition for Navigating Complex Urban Environments

    Full text link
    Navigating urban environments represents a complex task for automated vehicles. They must reach their goal safely and efficiently while considering a multitude of traffic participants. We propose a modular decision making algorithm to autonomously navigate intersections, addressing challenges of existing rule-based and reinforcement learning (RL) approaches. We first present a safe RL algorithm relying on a model-checker to ensure safety guarantees. To make the decision strategy robust to perception errors and occlusions, we introduce a belief update technique using a learning based approach. Finally, we use a scene decomposition approach to scale our algorithm to environments with multiple traffic participants. We empirically demonstrate that our algorithm outperforms rule-based methods and reinforcement learning techniques on a complex intersection scenario.Comment: 8 pages; 7 figure

    Structure-Aware Stochastic Control for Transmission Scheduling

    Full text link
    In this paper, we consider the problem of real-time transmission scheduling over time-varying channels. We first formulate the transmission scheduling problem as a Markov decision process (MDP) and systematically unravel the structural properties (e.g. concavity in the state-value function and monotonicity in the optimal scheduling policy) exhibited by the optimal solutions. We then propose an online learning algorithm which preserves these structural properties and achieves -optimal solutions for an arbitrarily small . The advantages of the proposed online method are that: (i) it does not require a priori knowledge of the traffic arrival and channel statistics and (ii) it adaptively approximates the state-value functions using piece-wise linear functions and has low storage and computation complexity. We also extend the proposed low-complexity online learning solution to the prioritized data transmission. The simulation results demonstrate that the proposed method achieves significantly better utility (or delay)-energy trade-offs when comparing to existing state-of-art online optimization methods.Comment: 41page

    An Intelligent Call Admission Control Decision Mechanism for Wireless Networks

    Full text link
    The Call admission control (CAC) is one of the Radio Resource Management (RRM) techniques plays instrumental role in ensuring the desired Quality of Service (QoS) to the users working on different applications which have diversified nature of QoS requirements. This paper proposes a fuzzy neural approach for call admission control in a multi class traffic based Next Generation Wireless Networks (NGWN). The proposed Fuzzy Neural Call Admission Control (FNCAC) scheme is an integrated CAC module that combines the linguistic control capabilities of the fuzzy logic controller and the learning capabilities of the neural networks .The model is based on Recurrent Radial Basis Function Networks (RRBFN) which have better learning and adaptability that can be used to develop the intelligent system to handle the incoming traffic in the heterogeneous network environment. The proposed FNCAC can achieve reduced call blocking probability keeping the resource utilisation at an optimal level. In the proposed algorithm we have considered three classes of traffic having different QoS requirements. We have considered the heterogeneous network environment which can effectively handle this traffic. The traffic classes taken for the study are Conversational traffic, Interactive traffic and back ground traffic which are with varied QoS parameters. The paper also presents the analytical model for the CAC .The paper compares the call blocking probabilities for all the three types of traffic in both the models. The simulation results indicate that compared to Fuzzy logic based CAC, Conventional CAC, The simulation results are optimistic and indicates that the proposed FNCAC algorithm performs better where the call blocking probability is minimal when compared to other two methods.Comment: Journal of Computing online at https://sites.google.com/site/journalofcomputing

    Best-effort networks: modeling and performance analysis via large networks asymptotics

    Full text link
    In this paper we introduce a class of Markov models, termed best-effort networks, designed to capture performance indices such as mean transfer times in data networks with best-effort service. We introduce the so-called min bandwidth sharing policy as a conservative approximation to the classical max-min policy. We establish necessary and sufficient ergodicity conditions for best-effort networks under the min policy. We then resort to the mean field technique of statistical physics to analyze network performance deriving fixed point equations for the stationary distribution of large symmetrical best-effort networks. A specific instance of such net- works is the star-shaped network which constitutes a plausible model of a network with an overprovisioned backbone. Numerical and analytical study of the equations allows us to state a number of qualitative conclusions on the impact of traffic parameters (link loads) and topology parameters (route lengths) on mean document transfer time

    Online Factorization and Partition of Complex Networks From Random Walks

    Full text link
    Finding the reduced-dimensional structure is critical to understanding complex networks. Existing approaches such as spectral clustering are applicable only when the full network is explicitly observed. In this paper, we focus on the online factorization and partition of implicit large-scale networks based on observations from an associated random walk. We formulate this into a nonconvex stochastic factorization problem and propose an efficient and scalable stochastic generalized Hebbian algorithm. The algorithm is able to process dependent state-transition data dynamically generated by the underlying network and learn a low-dimensional representation for each vertex. By applying a diffusion approximation analysis, we show that the continuous-time limiting process of the stochastic algorithm converges globally to the "principal components" of the Markov chain and achieves a nearly optimal sample complexity. Once given the learned low-dimensional representations, we further apply clustering techniques to recover the network partition. We show that when the associated Markov process is lumpable, one can recover the partition exactly with high probability. We apply the proposed approach to model the traffic flow of Manhattan as city-wide random walks. By using our algorithm to analyze the taxi trip data, we discover a latent partition of the Manhattan city that closely matches the traffic dynamics
    corecore