1,178 research outputs found

    Modeling Scalability of Distributed Machine Learning

    Full text link
    Present day machine learning is computationally intensive and processes large amounts of data. It is implemented in a distributed fashion in order to address these scalability issues. The work is parallelized across a number of computing nodes. It is usually hard to estimate in advance how many nodes to use for a particular workload. We propose a simple framework for estimating the scalability of distributed machine learning algorithms. We measure the scalability by means of the speedup an algorithm achieves with more nodes. We propose time complexity models for gradient descent and graphical model inference. We validate our models with experiments on deep learning training and belief propagation. This framework was used to study the scalability of machine learning algorithms in Apache Spark.Comment: 6 pages, 4 figures, appears at ICDE 201

    Graphical model-based approaches to target tracking in sensor networks: an overview of some recent work and challenges

    Get PDF
    Sensor Networks have provided a technology base for distributed target tracking applications among others. Conventional centralized approaches to the problem lack scalability in such a scenario where a large number of sensors provide measurements simultaneously under a possibly non-collaborating environment. Therefore research efforts have focused on scalable, robust, and distributed algorithms for the inference tasks related to target tracking, i.e. localization, data association, and track maintenance. Graphical models provide a rigorous tool for development of such algorithms by modeling the information structure of a given task and providing distributed solutions through message passing algorithms. However, the limited communication capabilities and energy resources of sensor networks pose the additional difculty of considering the tradeoff between the communication cost and the accuracy of the result. Also the network structure and the information structure are different aspects of the problem and a mapping between the physical entities and the information structure is needed. In this paper we discuss available formalisms based on graphical models for target tracking in sensor networks with a focus on the aforementioned issues. We point out additional constraints that must be asserted in order to achieve further insight and more effective solutions

    Collaborative Training in Sensor Networks: A graphical model approach

    Full text link
    Graphical models have been widely applied in solving distributed inference problems in sensor networks. In this paper, the problem of coordinating a network of sensors to train a unique ensemble estimator under communication constraints is discussed. The information structure of graphical models with specific potential functions is employed, and this thus converts the collaborative training task into a problem of local training plus global inference. Two important classes of algorithms of graphical model inference, message-passing algorithm and sampling algorithm, are employed to tackle low-dimensional, parametrized and high-dimensional, non-parametrized problems respectively. The efficacy of this approach is demonstrated by concrete examples

    Ranking Medical Subject Headings using a factor graph model.

    Get PDF
    Automatically assigning MeSH (Medical Subject Headings) to articles is an active research topic. Recent work demonstrated the feasibility of improving the existing automated Medical Text Indexer (MTI) system, developed at the National Library of Medicine (NLM). Encouraged by this work, we propose a novel data-driven approach that uses semantic distances in the MeSH ontology for automated MeSH assignment. Specifically, we developed a graphical model to propagate belief through a citation network to provide robust MeSH main heading (MH) recommendation. Our preliminary results indicate that this approach can reach high Mean Average Precision (MAP) in some scenarios
    corecore