527 research outputs found

    Forecasting the capacity of LTE mobile networks

    Get PDF
    The ever increasing usage of networks around the world made the telecommunication companies to start planning ahead out of necessity. The present work is focused on analysing and understanding which of the tested predictive models best suits Long Term Evolution (LTE) behaviour regarding its capacity, by forecasting several Key Performance Indicators (KPI) originated from network daily cells and dedicated to the same subject. Many were the tested models, ranging from the benchmark models (which comprise naïve, seasonal naïve and drift), to Exponential Smoothing (ES), AutoRegressive Integrated Moving Average (ARIMA), Theta and Linear Regression and also including models used in the latest M4 competition. The inherent purpose was not to find a model that was definitely better than the remaining, but instead to understand which model can best serve the KPI under analysis and the predicted forecasted horizon. The present study forecasts and analyses several different models in order to achieve better predictive results so that telecommunication companies can make more informed decisions regarding network planning.O contínuo aumento global da utilização das redes de telecomunicação fez com que para os operadores de telecomunicações o planeamento deste tipo de infraestrutura fosse uma necessidade a considerar atempadamente. O presente estudo é focado na análise e compreensão sobre qual o modelo preditivo que melhor se adapta ao comportamento da rede Long Term Evolution (LTE) no que respeita à previsão da sua capacidade, ao calcular os valores futuros de vários indicadores de performance (KPI) originados por células, com frequência diária. Foram testados vários modelos, que incluem não apenas modelos de referência como naïve, seasonal naïve e drift, mas também Exponential Smoothing (ES), AutoRegressive Integrated Moving Average (ARIMA), Theta e o modelo Regressão Linear. Contudo, este estudo contou também com a utilização de outros modelos provenientes da competição M4. O propósito deste trabalho não é o de encontrar um modelo que se destaque de todos os outros nas várias previsões feitas, mas em vez disso compreender qual o modelo que melhor pode prever os futuros valores de um determinado KPI. Este trabalho analisa as várias previsões feitas pelos modelos estudados de forma a poder obter valores mais fidedignos para que dessa forma as operadores do mercado, possam tomar decisões mais bem informadas

    Internet of Things-aided Smart Grid: Technologies, Architectures, Applications, Prototypes, and Future Research Directions

    Full text link
    Traditional power grids are being transformed into Smart Grids (SGs) to address the issues in existing power system due to uni-directional information flow, energy wastage, growing energy demand, reliability and security. SGs offer bi-directional energy flow between service providers and consumers, involving power generation, transmission, distribution and utilization systems. SGs employ various devices for the monitoring, analysis and control of the grid, deployed at power plants, distribution centers and in consumers' premises in a very large number. Hence, an SG requires connectivity, automation and the tracking of such devices. This is achieved with the help of Internet of Things (IoT). IoT helps SG systems to support various network functions throughout the generation, transmission, distribution and consumption of energy by incorporating IoT devices (such as sensors, actuators and smart meters), as well as by providing the connectivity, automation and tracking for such devices. In this paper, we provide a comprehensive survey on IoT-aided SG systems, which includes the existing architectures, applications and prototypes of IoT-aided SG systems. This survey also highlights the open issues, challenges and future research directions for IoT-aided SG systems

    Efficient network management and security in 5G enabled internet of things using deep learning algorithms

    Get PDF
    The rise of fifth generation (5G) networks and the proliferation of internet-of-things (IoT) devices have created new opportunities for innovation and increased connectivity. However, this growth has also brought forth several challenges related to network management and security. Based on the review of literature it has been identified that majority of existing research work are limited to either addressing the network management issue or security concerns. In this paper, the proposed work has presented an integrated framework to address both network management and security concerns in 5G internet-of-things (IoT) network using a deep learning algorithm. Firstly, a joint approach of attention mechanism and long short-term memory (LSTM) model is proposed to forecast network traffic and optimization of network resources in a, service-based and user-oriented manner. The second contribution is development of reliable network attack detection system using autoencoder mechanism. Finally, a contextual model of 5G-IoT is discussed to demonstrate the scope of the proposed models quantifying the network behavior to drive predictive decision making in network resources and attack detection with performance guarantees. The experiments are conducted with respect to various statistical error analysis and other performance indicators to assess prediction capability of both traffic forecasting and attack detection model

    A survey of machine learning techniques applied to self organizing cellular networks

    Get PDF
    In this paper, a survey of the literature of the past fifteen years involving Machine Learning (ML) algorithms applied to self organizing cellular networks is performed. In order for future networks to overcome the current limitations and address the issues of current cellular systems, it is clear that more intelligence needs to be deployed, so that a fully autonomous and flexible network can be enabled. This paper focuses on the learning perspective of Self Organizing Networks (SON) solutions and provides, not only an overview of the most common ML techniques encountered in cellular networks, but also manages to classify each paper in terms of its learning solution, while also giving some examples. The authors also classify each paper in terms of its self-organizing use-case and discuss how each proposed solution performed. In addition, a comparison between the most commonly found ML algorithms in terms of certain SON metrics is performed and general guidelines on when to choose each ML algorithm for each SON function are proposed. Lastly, this work also provides future research directions and new paradigms that the use of more robust and intelligent algorithms, together with data gathered by operators, can bring to the cellular networks domain and fully enable the concept of SON in the near future

    Near real-time estimation of end-to-end performance in converged fixed-mobile networks

    Get PDF
    © Elsevier. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/The independent operation of mobile and fixed network segments is one of the main barriers that prevents improving network performance while reducing capital expenditures coming from overprovisioning. In particular, a coordinated dynamic network operation of both network segments is essential to guarantee end-to-end Key Performance Indicators (KPI), on which new network services rely on. To achieve such dynamic operation, accurate estimation of end-to-end KPIs is needed to trigger network reconfiguration before performance degrades. In this paper, we present a methodology to achieve an accurate, scalable, and predictive estimation of end-to-end KPIs with sub-second granularity near real-time in converged fixed-mobile networks. Specifically, we extend our CURSA-SQ methodology for mobile network traffic analysis, to enable converged fixed-mobile network operation. CURSA-SQ combines simulation and machine learning fueled with real network monitoring data. Numerical results validate the accuracy, robustness, and usability of the proposed CURSA-SQ methodology for converged fixed-mobile network scenarios.Peer ReviewedPostprint (author's final draft

    Street Smart in 5G : Vehicular Applications, Communication, and Computing

    Get PDF
    Recent advances in information technology have revolutionized the automotive industry, paving the way for next-generation smart vehicular mobility. Specifically, vehicles, roadside units, and other road users can collaborate to deliver novel services and applications that leverage, for example, big vehicular data and machine learning. Relatedly, fifth-generation cellular networks (5G) are being developed and deployed for low-latency, high-reliability, and high bandwidth communications. While 5G adjacent technologies such as edge computing allow for data offloading and computation at the edge of the network thus ensuring even lower latency and context-awareness. Overall, these developments provide a rich ecosystem for the evolution of vehicular applications, communications, and computing. Therefore in this work, we aim at providing a comprehensive overview of the state of research on vehicular computing in the emerging age of 5G and big data. In particular, this paper highlights several vehicular applications, investigates their requirements, details the enabling communication technologies and computing paradigms, and studies data analytics pipelines and the integration of these enabling technologies in response to application requirements.Peer reviewe

    A Machine Learning-based Framework for Optimizing the Operation of Future Networks

    Get PDF
    5G and beyond are not only sophisticated and difficult to manage, but must also satisfy a wide range of stringent performance requirements and adapt quickly to changes in traffic and network state. Advances in machine learning and parallel computing underpin new powerful tools that have the potential to tackle these complex challenges. In this article, we develop a general machinelearning- based framework that leverages artificial intelligence to forecast future traffic demands and characterize traffic features. This makes it possible to exploit such traffic insights to improve the performance of critical network control mechanisms, such as load balancing, routing, and scheduling. In contrast to prior works that design problem-specific machine learning algorithms, our generic approach can be applied to different network functions, allowing reuse of existing control mechanisms with minimal modifications. We explain how our framework can orchestrate ML to improve two different network mechanisms. Further, we undertake validation by implementing one of these, mobile backhaul routing, using data collected by a major European operator and demonstrating a 3×reduction of the packet delay compared to traditional approaches.This work is partially supported by the Madrid Regional Government through the TAPIR-CM program (S2018/TCS-4496) and the Juan de la Cierva grant (FJCI-2017-32309). Paul Patras acknowledges the support received from the Cisco University Research Program Fund (2019-197006)
    corecore