1,877 research outputs found

    Data adaptive estimation of transversal blood flow velocities

    Get PDF
    The examination of blood flow inside the body may yield important information about vascular anomalies, such as possible indications of, for example, stenosis. Current medical ultrasound systems suffer from only allowing for measuring the blood flow velocity along the direction of irradiation, posing natural difficulties due to the complex behaviour of blood flow, and due to the natural orientation of most blood vessels. Recently, a transversal modulation scheme was introduced to induce also an oscillation along the transversal direction, thereby allowing for the measurement of also the transversal blood flow. In this paper, we propose a novel data-adaptive blood flow estimator exploiting this modulation scheme. Using realistic Field II simulations, the proposed estimator is shown to achieve a notable performance improvement as compared to current state-of-the-art techniques

    Blood Velocities Estimation using Ultrasound

    Get PDF
    This thesis consists of two parts. In the rst part, the iterative data-adaptive BIAA spectral estimation technique was extended to estimate lateral blood velocities using ultrasound scanners. The BIAA method makes no assumption on samples depth or sampling pattern, and therefore allows for transmission in duplex mode imaging. The technique was examined on a realistic Field II simulation data set, and showed fewer spectral artifacts in comparison with other techniques. In the second part of the thesis, another common problem in blood velocity estimation has been investigated, namely strong backscattered signals from stationary echoes. Two methods have been tested to examine the possibility of overcoming this problem. However, neither of these methods resulted in a better estimation of the blood velocities, most likely as the clutter characteristics in color ow images vary too rapidly to allow for this form of models. This might be a result of the non-stationary tissue motions which could be caused by a variety of factors, such as cardiac activities, respiration, transducer/patient movement, or a combination of them

    Computationally Efficient Time-Recursive IAA-Based Blood Velocity Estimation

    Get PDF
    High-resolution spectral Doppler is an important and pow- erful non-invasive tool for estimation of velocities in blood vessels using medical ultrasound scanners. Such estimates are typically formed using an averaged periodogram technique, resulting in well-known limitations in the resulting spectral resolution. Recently, we have proposed tech- niques to instead form high-resolution data-adaptive estimates exploiting measurements along both depth and emission. The resulting estimates gives noticeably superior velocity estimates as compared to the standard technique, but suffers from a high computational complexity, making it interesting to formulate computationally efficient implementations of the estimators. In this work, by exploiting the rich structure of the iterative adaptive approach (IAA) based estimator, we examine how these estimates can be efficiently implemented in a time-recursive manner using both exact and approximate formulations of the method. The resulting algorithms are shown to reduce the necessary computational load with several orders of magnitude without noticeable loss of performance

    Echocardiography

    Get PDF
    The book "Echocardiography - New Techniques" brings worldwide contributions from highly acclaimed clinical and imaging science investigators, and representatives from academic medical centers. Each chapter is designed and written to be accessible to those with a basic knowledge of echocardiography. Additionally, the chapters are meant to be stimulating and educational to the experts and investigators in the field of echocardiography. This book is aimed primarily at cardiology fellows on their basic echocardiography rotation, fellows in general internal medicine, radiology and emergency medicine, and experts in the arena of echocardiography. Over the last few decades, the rate of technological advancements has developed dramatically, resulting in new techniques and improved echocardiographic imaging. The authors of this book focused on presenting the most advanced techniques useful in today's research and in daily clinical practice. These advanced techniques are utilized in the detection of different cardiac pathologies in patients, in contributing to their clinical decision, as well as follow-up and outcome predictions. In addition to the advanced techniques covered, this book expounds upon several special pathologies with respect to the functions of echocardiography

    Ultrafast Ultrasound Imaging

    Get PDF
    Among medical imaging modalities, such as computed tomography (CT) and magnetic resonance imaging (MRI), ultrasound imaging stands out due to its temporal resolution. Owing to the nature of medical ultrasound imaging, it has been used for not only observation of the morphology of living organs but also functional imaging, such as blood flow imaging and evaluation of the cardiac function. Ultrafast ultrasound imaging, which has recently become widely available, significantly increases the opportunities for medical functional imaging. Ultrafast ultrasound imaging typically enables imaging frame-rates of up to ten thousand frames per second (fps). Due to the extremely high temporal resolution, this enables visualization of rapid dynamic responses of biological tissues, which cannot be observed and analyzed by conventional ultrasound imaging. This Special Issue includes various studies of improvements to the performance of ultrafast ultrasoun

    Arterial wall mechanics and atherosclerosis

    Get PDF

    Enhancing magnetic resonance imaging with computational fluid dynamics

    Get PDF
    Quantitative assessment of haemodynamics has been utilised for better understanding of cardiac function and assisting diagnostics of cardiovascular diseases. To study haemodynamics, magnetic resonance imaging (MRI) and computational fluid dynamics (CFD) are widely used because of their non-invasive nature. It has been demonstrated that the two approaches are complementary to each other with their own advantages and limitations. Four dimensional cardiovascular magnetic resonance (4D Flow CMR) imaging enables direct measurement of blood flow velocity in vivo while spatial and temporal resolutions as well as region of image acquisition are limited to achieve a detailed assessment of the haemodynamics. CFD, on the other hand, is a powerful tool that has the potential to expand the image-obtained velocity fields with some problem-specific assumptions such as rigid arterial walls. We suggest a novel approach in which 4D Flow CMR and CFD are integrated synergistically in order to obtain an enhanced 4D Flow CMRI (EMRI). The enhancement will consist in overcoming the spatial-resolution limitations of the original 4D Flow CMRI, which will enable more accurate quantification of flow dependent bio-mechanical quantities (e.g. endothelial shear stress) as well as non-invasive estimation of blood pressure. At the same time, it will reduce a number of assumptions in conventional haemodynamic CFD such as in/outflow conditions including the effect of valves, the impact of patient-specific vessel wall motion and the effect of the surrounding tissues. The approach was first tested on a 2D portion of a pipe, to understand the behaviour of the parameters of the model in this novel framework. Afterwards the methodology was tested on patient specific data, to apply it to the analysis of blood flow in a patient specific human aorta, in 2D. The outcomes of EMRI are assessed by comparing the computed velocities with the 4D Flow CMR one. A fundamental step to allow the translation to clinics of this methodology was the validation. The study was performed on an idealised-simplified model of the human aortic arch – a U bend – with a sinusoidal inflow applied by a pump. Firstly, phase resolved particle image velocimetry (PIV) (an experimental technique enables high spatial-temporal resolution) was performed in 5 different time points of the pump cycle, using a blood alike fluid with the same refractive index matched of the clear silicon phantom, and seeded with silver coated hollow glass spheres. Real time 4D Flow CMR was then performed on the phantom with MRI. Lastly using the pump flow rate and the phantom geometry, a computation of the flow through the U bend was conducted using Ansys CFX. The flow patterns obtained from the 3 methods were compared in the middle plane of the phantom. The methodology was then applied to study a patient specific aorta in 3D, and retrieve flow patterns and flow dependent parameters. Finally, the validated methodology was applied to study atherogenesis, and in particular to investigate the relation between EMRI retrieved flow quantities (e.g. wall shear stress (WSS)) and temperature heterogeneity. A carotid artery phantom was realised and studied with CFD, MRT and EMRI. All the results demonstrate that EMRI preserves flow structures while correcting for experimental noise. Therefore it can provide better insights of the haemodynamics of cardiovascular problems, overcoming the limitations of 4D Flow CMR and CFD, even when considering a small region of interest. These findings were supported by the validation experiment that showed how EMRI retrieved flow patterns were much more consistent with the one measured with high resolution PIV, compensating for 4D Flow CMR errors. These findings lead to the application to the atherogenesis problem, allowing higher resolution flow patterns, more suitable to be compared to the temperature distribution and highlighted how flow patterns exert an influence on the temperature distribution on the vessel wall. EMRI confirmed its potential to provide more accurate non-invasive estimation of flow derived and flow dependent quantities and become a novel diagnostic tool

    Longitudinal wall shear stress evaluation using centerline projection approach in the numerical simulations of the patient-based carotid artery

    Full text link
    In this numerical study areas of the carotid bifurcation and of a distal stenosis in the internal carotid artery are closely observed to evaluate the patient's current risks of ischemic stroke. An indicator for the vessel wall defects is the stress the blood is exerting on the surrounding vessel tissue, expressed standardly by the amplitude of the wall shear stress vector (WSS) and its oscillatory shear index. In contrast, our orientation-based shear evaluation detects negative shear stresses corresponding with reversal flow appearing in low shear areas. In our investigations of longitudinal component of the wall shear vector, tangential vectors aligned longitudinally with the vessel are necessary. However, as a result of stenosed regions and imaging segmentation techniques from patients' CTA scans, the geometry model's mesh is non-smooth on its surface areas and the automatically generated tangential vector field is discontinuous and multi-directional, making an interpretation of the orientation-based risk indicators unreliable. We improve the evaluation of longitudinal shear stress by applying the projection of the vessel's center-line to the surface to construct smooth tangetial field aligned longitudinaly with the vessel. We validate our approach for the longitudinal WSS component and the corresponding oscillatory index by comparing them to results obtained using automatically generated tangents in both rigid and elastic vessel modeling as well as to amplitude based indicators. The major benefit of our WSS evaluation based on its longitudinal component for the cardiovascular risk assessment is the detection of negative WSS indicating persitent reversal flow. This is impossible in the case of the amplitude-based WSS
    • …
    corecore