9,784 research outputs found

    Damage identification in structural health monitoring: a brief review from its implementation to the Use of data-driven applications

    Get PDF
    The damage identification process provides relevant information about the current state of a structure under inspection, and it can be approached from two different points of view. The first approach uses data-driven algorithms, which are usually associated with the collection of data using sensors. Data are subsequently processed and analyzed. The second approach uses models to analyze information about the structure. In the latter case, the overall performance of the approach is associated with the accuracy of the model and the information that is used to define it. Although both approaches are widely used, data-driven algorithms are preferred in most cases because they afford the ability to analyze data acquired from sensors and to provide a real-time solution for decision making; however, these approaches involve high-performance processors due to the high computational cost. As a contribution to the researchers working with data-driven algorithms and applications, this work presents a brief review of data-driven algorithms for damage identification in structural health-monitoring applications. This review covers damage detection, localization, classification, extension, and prognosis, as well as the development of smart structures. The literature is systematically reviewed according to the natural steps of a structural health-monitoring system. This review also includes information on the types of sensors used as well as on the development of data-driven algorithms for damage identification.Peer ReviewedPostprint (published version

    Aerospace Medicine and Biology: A continuing bibliography with indexes (supplement 274)

    Get PDF
    This bibliography lists 128 reports, articles, and other documents introduced into the NASA scientific and technical information system in July 1985

    Aerospace medicine and biology: A continuing bibliography with indexes

    Get PDF
    This bibliography lists 148 reports, articles and other documents introduced into the NASA scientific and technical information system in December 1984

    Design and Analysis of a Mechanical Driveline with Generator for an Atmospheric Energy Harvester

    Get PDF
    The advent of renewable energy as a primary power source for microelectronic devices has motivated research within the energy harvesting community over the past decade. Compact, self-contained, portable energy harvesters can be applied to wireless sensor networks, Internet of Things (IoT) smart appliances, and a multitude of standalone equipment; replacing batteries and improving the operational life of such systems. Atmospheric changes influenced by cyclical temporal variations offer an abundance of harvestable thermal energy. However, the low conversion efficiency of a common thermoelectric device does not tend to be practical for microcircuit operations. One solution may lie in a novel electromechanical power transformer integrated with a thermodynamic based phase change material to create a temperature/pressure energy harvester. The performance of the proposed harvester will be investigated using both numerical and experimental techniques to offer insight into its functionality and power generation capabilities. The atmospheric energy harvester consists of a ethyl chloride filled mechanical bellows attached to an end plate and constrained by a stiff spring and four guide rails that allow translational motion. The electromechanical power transformer consists of a compound gear train driven by the bellows end plate, a ratchet-controlled coil spring to store energy, and a DC micro generator. Nonlinear mathematical models have been developed for this multi-domain dynamic system using fundamental engineering principles. The initial analyses predicted 9.6 mW electric power generation over a 24 hour period for ±1°C temperature variations about a nominal 22°C temperature. Transfer functions were identified from the lumped parameter models and the transient behavior of the coupled thermal-electromechanical system has been studied. A prototype experimental system was fabricated and laboratory tested to study the overall performance and validate the mathematical models for the integrated energy harvester system. The experimental results agree with the numerical analyses in behavioral characteristics. Further, the power generation capacity of 30 mW for a representative electrical resistance load and emulated rack input which correspond to 50 cyclic bidirectional temperature variations (~175 hours of field operation) validated the simulation models. This research study provides insight into the challenges of designing an electromechanical power transformer to complement an atmospheric energy harvester system. The mathematical models estimated the behavior and performance of the integrated harvester system and establishes a foundation for future optimization studies. The opportunity to power microelectronic devices in the milliwatt range for burst electric operation or with the use of supercapacitors/batteries enables global remote operation of smart appliances. This system can assist in reducing/eliminating the need for batteries and improving the operational life of a variety of autonomous equipment. Future research areas have been identified to improve the overall system capabilities and implement the harvester device for real-world applications

    Conceptual design study of a Harrier V/STOL research aircraft

    Get PDF
    MCAIR recently completed a conceptual design study to define modification approaches to, and derive planning prices for the conversion of a two place Harrier to a V/STOL control, display and guidance research aircraft. Control concepts such as rate damping, attitude stabilization, velocity command, and cockpit controllers are to be demonstrated. Display formats will also be investigated, and landing, navigation and guidance systems flight tested. The rear cockpit is modified such that it can be quickly adapted to faithfully simulate the controls, displays and handling qualities of a Type A or Type B V/STOL. The safety pilot always has take command capability. The modifications studied fall into two categories: basic modifications and optional modifications. Technical descriptions of the basic modifications and of the optional modifications are presented. The modification plan and schedule as well as the test plan and schedule are presented. The failure mode and effects analysis, aircraft performance, aircraft weight, and aircraft support are discussed

    NASA/FAA experiments concerning helicopter IFR airworthiness criteria

    Get PDF
    A sequence of ground and flight simulation experiments was conducted as part of a joint NASA/FAA program to investigate helicopter instrument flight rules (IFR) airworthiness criteria. The first six of these experiments are described and the results summarized. Five of the experiments were conducted on large amplitude motion base simulators; V/STOLAND UH-1H variable stability helicopter was used in the flight experiment. Airworthiness implications of selected variables that were investigated across all of the experiments are discussed, including the level of longitudinal static stability, the type of stability and control augmentation, the addition of flight director displays, and the type of instrument approach task. Among the specific results reviewed are the adequacy of neutral longitudinal statics for dual pilot approaches and the requirement for pitch and roll attitude stabilization in the stability and control augmentation system to achieve flying qualities evaluated as satisfactory

    Aeronautical Engineering: A special bibliography with indexes, supplement 48

    Get PDF
    This special bibliography lists 291 reports, articles, and other documents introduced into the NASA scientific and technical information system in August 1974
    • …
    corecore