70 research outputs found

    Temporal and Evolving Data Warehouse Design

    Get PDF

    OLEMAR: An Online Environment for Mining Association Rules in Multidimensional Data

    Get PDF
    Data warehouses and OLAP (online analytical processing) provide tools to explore and navigate through data cubes in order to extract interesting information under different perspectives and levels of granularity. Nevertheless, OLAP techniques do not allow the identification of relationships, groupings, or exceptions that could hold in a data cube. To that end, we propose to enrich OLAP techniques with data mining facilities to benefit from the capabilities they offer. In this chapter, we propose an online environment for mining association rules in data cubes. Our environment called OLEMAR (online environment for mining association rules), is designed to extract associations from multidimensional data. It allows the extraction of inter-dimensional association rules from data cubes according to a sum-based aggregate measure, a more general indicator than aggregate values provided by the traditional COUNT measure. In our approach, OLAP users are able to drive a mining process guided by a meta-rule, which meets their analysis objectives. In addition, the environment is based on a formalization, which exploits aggregate measures to revisit the definition of the support and the confidence of discovered rules. This formalization also helps evaluate the interestingness of association rules according to two additional quality measures: lift and loevinger. Furthermore, in order to focus on the discovered associations and validate them, we provide a visual representation based on the graphic semiology principles. Such a representation consists in a graphic encoding of frequent patterns and association rules in the same multidimensional space as the one associated with the mined data cube. We have developed our approach as a component in a general online analysis platform called Miningcubes according to an Apriori-like algorithm, which helps extract inter-dimensional association rules directly from materialized multidimensional structures of data. In order to illustrate the effectiveness and the efficiency of our proposal, we analyze a real-life case study about breast cancer data and conduct performance experimentation of the mining process

    Leveraging query logs for user-centric OLAP

    Get PDF
    OLAP (On-Line Analytical Processing), the process of efficiently enabling common analytical operations on the multidimensional view of data, is a corner stone of Business Intelligence.While OLAP is now a mature, efficiently implemented technology, very little attention has been paid to the effectiveness of the analysis and the user-friendliness of this technology, often considered tedious of use.This dissertation is a contribution to developing user-centric OLAP, focusing on the use of former queries logged by an OLAP server to enhance subsequent analyses. It shows how logs of OLAP queries can be modeled, constructed, manipulated, compared, and finally leveraged for personalization and recommendation.Logs are modeled as sets of analytical sessions, sessions being modeled as sequences of OLAP queries. Three main approaches are presented for modeling queries: as unevaluated collections of fragments (e.g., group by sets, sets of selection predicates, sets of measures), as sets of references obtained by partially evaluating the query over dimensions, or as query answers. Such logs can be constructed even from sets of SQL query expressions, by translating these expressions into a multidimensional algebra, and bridging the translations to detect analytical sessions. Logs can be searched, filtered, compared, combined, modified and summarized with a language inspired by the relational algebra and parametrized by binary relations over sessions. In particular, these relations can be specialization relations or based on similarity measures tailored for OLAP queries and analytical sessions. Logs can be mined for various hidden knowledge, that, depending on the query model used, accurately represents the user behavior extracted.This knowledge includes simple preferences, navigational habits and discoveries made during former explorations,and can be it used in various query personalization or query recommendation approaches.Such approaches vary in terms of formulation effort, proactiveness, prescriptiveness and expressive power:query personalization, i.e., coping with a current query too few or too many results, can use dedicated operators for expressing preferences, or be based on query expansion;query recommendation, i.e., suggesting queries to pursue an analytical session,can be based on information extracted from the current state of the database and the query, or be purely history based, i.e., leveraging the query log.While they can be immediately integrated into a complete architecture for User-Centric Query Answering in data warehouses, the models and approaches introduced in this dissertation can also be seen as a starting point for assessing the effectiveness of analytical sessions, with the ultimate goal to enhance the overall decision making process

    Intégration holistique et entreposage automatique des données ouvertes

    Get PDF
    Statistical Open Data present useful information to feed up a decision-making system. Their integration and storage within these systems is achieved through ETL processes. It is necessary to automate these processes in order to facilitate their accessibility to non-experts. These processes have also need to face out the problems of lack of schemes and structural and sematic heterogeneity, which characterize the Open Data. To meet these issues, we propose a new ETL approach based on graphs. For the extraction, we propose automatic activities performing detection and annotations based on a model of a table. For the transformation, we propose a linear program fulfilling holistic integration of several graphs. This model supplies an optimal and a unique solution. For the loading, we propose a progressive process for the definition of the multidimensional schema and the augmentation of the integrated graph. Finally, we present a prototype and the experimental evaluations.Les statistiques présentes dans les Open Data ou données ouvertes constituent des informations utiles pour alimenter un système décisionnel. Leur intégration et leur entreposage au sein du système décisionnel se fait à travers des processus ETL. Il faut automatiser ces processus afin de faciliter leur accessibilité à des non-experts. Ces processus doivent pallier aux problèmes de manque de schémas, d'hétérogénéité structurelle et sémantique qui caractérisent les données ouvertes. Afin de répondre à ces problématiques, nous proposons une nouvelle démarche ETL basée sur les graphes. Pour l'extraction du graphe d'un tableau, nous proposons des activités de détection et d'annotation automatiques. Pour la transformation, nous proposons un programme linéaire pour résoudre le problème d'appariement holistique de données structurelles provenant de plusieurs graphes. Ce modèle fournit une solution optimale et unique. Pour le chargement, nous proposons un processus progressif pour la définition du schéma multidimensionnel et l'augmentation du graphe intégré. Enfin, nous présentons un prototype et les résultats d'expérimentations

    Business Intelligence on Non-Conventional Data

    Get PDF
    The revolution in digital communications witnessed over the last decade had a significant impact on the world of Business Intelligence (BI). In the big data era, the amount and diversity of data that can be collected and analyzed for the decision-making process transcends the restricted and structured set of internal data that BI systems are conventionally limited to. This thesis investigates the unique challenges imposed by three specific categories of non-conventional data: social data, linked data and schemaless data. Social data comprises the user-generated contents published through websites and social media, which can provide a fresh and timely perception about people’s tastes and opinions. In Social BI (SBI), the analysis focuses on topics, meant as specific concepts of interest within the subject area. In this context, this thesis proposes meta-star, an alternative strategy to the traditional star-schema for modeling hierarchies of topics to enable OLAP analyses. The thesis also presents an architectural framework of a real SBI project and a cross-disciplinary benchmark for SBI. Linked data employ the Resource Description Framework (RDF) to provide a public network of interlinked, structured, cross-domain knowledge. In this context, this thesis proposes an interactive and collaborative approach to build aggregation hierarchies from linked data. Schemaless data refers to the storage of data in NoSQL databases that do not force a predefined schema, but let database instances embed their own local schemata. In this context, this thesis proposes an approach to determine the schema profile of a document-based database; the goal is to facilitate users in a schema-on-read analysis process by understanding the rules that drove the usage of the different schemata. A final and complementary contribution of this thesis is an innovative technique in the field of recommendation systems to overcome user disorientation in the analysis of a large and heterogeneous wealth of data

    Mining climate data for shire level wheat yield predictions in Western Australia

    Get PDF
    Climate change and the reduction of available agricultural land are two of the most important factors that affect global food production especially in terms of wheat stores. An ever increasing world population places a huge demand on these resources. Consequently, there is a dire need to optimise food production. Estimations of crop yield for the South West agricultural region of Western Australia have usually been based on statistical analyses by the Department of Agriculture and Food in Western Australia. Their estimations involve a system of crop planting recommendations and yield prediction tools based on crop variety trials. However, many crop failures arise from adherence to these crop recommendations by farmers that were contrary to the reported estimations. Consequently, the Department has sought to investigate new avenues for analyses that improve their estimations and recommendations. This thesis explores a new approach in the way analyses are carried out. This is done through the introduction of new methods of analyses such as data mining and online analytical processing in the strategy. Additionally, this research attempts to provide a better understanding of the effects of both gradual variation parameters such as soil type, and continuous variation parameters such as rainfall and temperature, on the wheat yields. The ultimate aim of the research is to enhance the prediction efficiency of wheat yields. The task was formidable due to the complex and dichotomous mixture of gradual and continuous variability data that required successive information transformations. It necessitated the progressive moulding of the data into useful information, practical knowledge and effective industry practices. Ultimately, this new direction is to improve the crop predictions and to thereby reduce crop failures. The research journey involved data exploration, grappling with the complexity of Geographic Information System (GIS), discovering and learning data compatible software tools, and forging an effective processing method through an iterative cycle of action research experimentation. A series of trials was conducted to determine the combined effects of rainfall and temperature variations on wheat crop yields. These experiments specifically related to the South Western Agricultural region of Western Australia. The study focused on wheat producing shires within the study area. The investigations involved a combination of macro and micro analyses techniques for visual data mining and data mining classification techniques, respectively. The research activities revealed that wheat yield was most dependent upon rainfall and temperature. In addition, it showed that rainfall cyclically affected the temperature and soil type due to the moisture retention of crop growing locations. Results from the regression analyses, showed that the statistical prediction of wheat yields from historical data, may be enhanced by data mining techniques including classification. The main contribution to knowledge as a consequence of this research was the provision of an alternate and supplementary method of wheat crop prediction within the study area. Another contribution was the division of the study area into a GIS surface grid of 100 hectare cells upon which the interpolated data was projected. Furthermore, the proposed framework within this thesis offers other researchers, with similarly structured complex data, the benefits of a general processing pathway to enable them to navigate their own investigations through variegated analytical exploration spaces. In addition, it offers insights and suggestions for future directions in other contextual research explorations

    Health history pattern extraction from textual medical records

    Get PDF
    Extracting patterns from medical records using temporal data mining techniques
    • …
    corecore