12,434 research outputs found

    Optimal succinct representation of planar maps

    Get PDF
    This paper addresses the problem of representing the connectivity information of geometric objects using as little memory as possible. As opposed to raw compression issues, the focus is here on designing data structures that preserve the possibility of answering incidence queries in constant time. We propose in particular the first optimal representations for 3-connected planar graphs and triangulations, which are the most standard classes of graphs underlying meshes with spherical topology. Optimal means that these representations asymptotically match the respective entropy of the two classes, namely 2 bits per edge for 3-c planar graphs, and 1.62 bits per triangle or equivalently 3.24 bits per vertex for triangulations

    Planar Reachability Under Single Vertex or Edge Failures

    Get PDF
    International audienceIn this paper we present an efficient reachability oracle under single-edge or single-vertex failures for planar directed graphs. Specifically, we show that a planar digraph G can be preprocessed in O(n log 2 n/log log n) time, producing an O(n log n)-space data structure that can answer in O(log n) time whether u can reach v in G if the vertex x (the edge f) is removed from G, for any query vertices u, v and failed vertex x (failed edge f). To the best of our knowledge, this is the first data structure for planar directed graphs with nearly optimal preprocessing time that answers all-pairs queries under any kind of failures in polylogarithmic time. We also consider 2-reachability problems, where we are given a planar digraph G and we wish to determine if there are two vertex-disjoint (edge-disjoint) paths from u to v, for query vertices u, v. In this setting we provide a nearly optimal 2-reachability oracle, which is the existential variant of the reachability oracle under single failures, with the following bounds. We can construct in O(n polylog n) time an O(n log 3+o(1) n)-space data structure that can check in O(log 2+o(1) n) time for any query vertices u, v whether v is 2-reachable from u, or otherwise find some separating vertex (edge) x lying on all paths from u to v in G. To obtain our results, we follow the general recursive approach of Thorup for reachability in planar graphs [J. ACM '04] and we present new data structures which generalize dominator trees and previous data structures for strong-connectivity under failures [Georgiadis et al., SODA '17]. Our new data structures work also for general digraphs and may be of independent interest

    Optimal succinct representations of planar maps

    Get PDF
    This paper addresses the problem of representing the connectivity information of geometric objects using as little memory as possible. As opposed to raw compression issues, the focus is here on designing data structures that preserve the possibility of answering incidence queries in constant time. We propose in particular the first optimal representations for 3-connected planar graphs and triangulations, which are the most standard classes of graphs underlying meshes with spherical topology. Optimal means that these representations asymptotically match the respective entropy of the two classes, namely 2 bits per edge for 3-connected planar graphs, and 1.62 bits per triangle or equivalently 3.24 bits per vertex for triangulations

    Connectivity Oracles for Graphs Subject to Vertex Failures

    Full text link
    We introduce new data structures for answering connectivity queries in graphs subject to batched vertex failures. A deterministic structure processes a batch of ddd\leq d_{\star} failed vertices in O~(d3)\tilde{O}(d^3) time and thereafter answers connectivity queries in O(d)O(d) time. It occupies space O(dmlogn)O(d_{\star} m\log n). We develop a randomized Monte Carlo version of our data structure with update time O~(d2)\tilde{O}(d^2), query time O(d)O(d), and space O~(m)\tilde{O}(m) for any failure bound dnd\le n. This is the first connectivity oracle for general graphs that can efficiently deal with an unbounded number of vertex failures. We also develop a more efficient Monte Carlo edge-failure connectivity oracle. Using space O(nlog2n)O(n\log^2 n), dd edge failures are processed in O(dlogdloglogn)O(d\log d\log\log n) time and thereafter, connectivity queries are answered in O(loglogn)O(\log\log n) time, which are correct w.h.p. Our data structures are based on a new decomposition theorem for an undirected graph G=(V,E)G=(V,E), which is of independent interest. It states that for any terminal set UVU\subseteq V we can remove a set BB of U/(s2)|U|/(s-2) vertices such that the remaining graph contains a Steiner forest for UBU-B with maximum degree ss

    Optimal decremental connectivity in planar graphs

    Get PDF
    We show an algorithm for dynamic maintenance of connectivity information in an undirected planar graph subject to edge deletions. Our algorithm may answer connectivity queries of the form `Are vertices uu and vv connected with a path?' in constant time. The queries can be intermixed with any sequence of edge deletions, and the algorithm handles all updates in O(n)O(n) time. This results improves over previously known O(nlogn)O(n \log n) time algorithm

    Decremental Single-Source Reachability in Planar Digraphs

    Full text link
    In this paper we show a new algorithm for the decremental single-source reachability problem in directed planar graphs. It processes any sequence of edge deletions in O(nlog2nloglogn)O(n\log^2{n}\log\log{n}) total time and explicitly maintains the set of vertices reachable from a fixed source vertex. Hence, if all edges are eventually deleted, the amortized time of processing each edge deletion is only O(log2nloglogn)O(\log^2 n \log \log n), which improves upon a previously known O(n)O(\sqrt{n}) solution. We also show an algorithm for decremental maintenance of strongly connected components in directed planar graphs with the same total update time. These results constitute the first almost optimal (up to polylogarithmic factors) algorithms for both problems. To the best of our knowledge, these are the first dynamic algorithms with polylogarithmic update times on general directed planar graphs for non-trivial reachability-type problems, for which only polynomial bounds are known in general graphs
    corecore