1,095 research outputs found

    Summarization of human activity videos via low-rank approximation

    Get PDF

    Multimodal Stereoscopic Movie Summarization Conforming to Narrative Characteristics

    Get PDF
    Video summarization is a timely and rapidly developing research field with broad commercial interest, due to the increasing availability of massive video data. Relevant algorithms face the challenge of needing to achieve a careful balance between summary compactness, enjoyability, and content coverage. The specific case of stereoscopic 3D theatrical films has become more important over the past years, but not received corresponding research attention. In this paper, a multi-stage, multimodal summarization process for such stereoscopic movies is proposed, that is able to extract a short, representative video skim conforming to narrative characteristics from a 3D film. At the initial stage, a novel, low-level video frame description method is introduced (frame moments descriptor) that compactly captures informative image statistics from luminance, color, optical flow, and stereoscopic disparity video data, both in a global and in a local scale. Thus, scene texture, illumination, motion, and geometry properties may succinctly be contained within a single frame feature descriptor, which can subsequently be employed as a building block in any key-frame extraction scheme, e.g., for intra-shot frame clustering. The computed key-frames are then used to construct a movie summary in the form of a video skim, which is post-processed in a manner that also considers the audio modality. The next stage of the proposed summarization pipeline essentially performs shot pruning, controlled by a user-provided shot retention parameter, that removes segments from the skim based on the narrative prominence of movie characters in both the visual and the audio modalities. This novel process (multimodal shot pruning) is algebraically modeled as a multimodal matrix column subset selection problem, which is solved using an evolutionary computing approach. Subsequently, disorienting editing effects induced by summarization are dealt with, through manipulation of the video skim. At the last step, the skim is suitably post-processed in order to reduce stereoscopic video defects that may cause visual fatigue

    Constructing fading histograms from data streams

    Get PDF
    The ability to collect data is changing drastically. Nowadays, data are gathered in the form of transient and finite data streams. Memory restrictions preclude keeping all received data in memory. When dealing with massive data streams, it is mandatory to create compact representations of data, also known as synopses structures or summaries. Reducing memory occupancy is of utmost importance when handling a huge amount of data. This paper addresses the problem of constructing histograms from data streams under error constraints. When constructing online histograms from data streams there are two main characteristics to embrace: the updating facility and the error of the histogram. Moreover, in dynamic environments, besides the need of compact summaries to capture the most important properties of data, it is also essential to forget old data. Therefore, this paper presents sliding histograms and fading histograms, an abrupt and a smooth strategies to forget outdated data

    Unsupervised Learning from Narrated Instruction Videos

    Full text link
    We address the problem of automatically learning the main steps to complete a certain task, such as changing a car tire, from a set of narrated instruction videos. The contributions of this paper are three-fold. First, we develop a new unsupervised learning approach that takes advantage of the complementary nature of the input video and the associated narration. The method solves two clustering problems, one in text and one in video, applied one after each other and linked by joint constraints to obtain a single coherent sequence of steps in both modalities. Second, we collect and annotate a new challenging dataset of real-world instruction videos from the Internet. The dataset contains about 800,000 frames for five different tasks that include complex interactions between people and objects, and are captured in a variety of indoor and outdoor settings. Third, we experimentally demonstrate that the proposed method can automatically discover, in an unsupervised manner, the main steps to achieve the task and locate the steps in the input videos.Comment: Appears in: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2016). 21 page

    Rushes summarization by IRIM consortium: redundancy removal and multi-feature fusion

    Get PDF
    International audienceIn this paper, we present the first participation of a consortium of French laboratories, IRIM, to the TRECVID 2008 BBC Rushes Summarization task. Our approach resorts to video skimming. We propose two methods to reduce redundancy, as rushes include several takes of scenes. We also take into account low and midlevel semantic features in an ad-hoc fusion method in order to retain only significant content
    • …
    corecore