33,661 research outputs found

    Publishing LO(D)D: Linked Open (Dynamic) Data for Smart Sensing and Measuring Environments

    Get PDF
    The paper proposes a distributed framework that provides a systematic way to publish environment data which is being updated continuously; such updates might be issued at specific time intervals or bound to some environment- specific event. The framework targets smart environments having networks of devices and sensors which are interacting with each other and with their respective environments to gather and generate data and willing to publish this data. This paper addresses the issues of supporting the data publishers to maintain up-to-date and machine understandable representations, separation of views (static or dynamic data) and delivering up-to-date information to data consumers in real time, helping data consumers to keep track of changes triggered from diverse environments and keeping track of evolution of the smart environment. The paper also describes a prototype implementation of the proposed architecture. A preliminary use case implementation over a real energy metering infrastructure is also provided in the paper to prove the feasibility of the architectur

    Agile Data Offloading over Novel Fog Computing Infrastructure for CAVs

    Full text link
    Future Connected and Automated Vehicles (CAVs) will be supervised by cloud-based systems overseeing the overall security and orchestrating traffic flows. Such systems rely on data collected from CAVs across the whole city operational area. This paper develops a Fog Computing-based infrastructure for future Intelligent Transportation Systems (ITSs) enabling an agile and reliable off-load of CAV data. Since CAVs are expected to generate large quantities of data, it is not feasible to assume data off-loading to be completed while a CAV is in the proximity of a single Road-Side Unit (RSU). CAVs are expected to be in the range of an RSU only for a limited amount of time, necessitating data reconciliation across different RSUs, if traditional approaches to data off-load were to be used. To this end, this paper proposes an agile Fog Computing infrastructure, which interconnects all the RSUs so that the data reconciliation is solved efficiently as a by-product of deploying the Random Linear Network Coding (RLNC) technique. Our numerical results confirm the feasibility of our solution and show its effectiveness when operated in a large-scale urban testbed.Comment: To appear in IEEE VTC-Spring 201

    An Efficient Transport Protocol for delivery of Multimedia An Efficient Transport Protocol for delivery of Multimedia Content in Wireless Grids

    Get PDF
    A grid computing system is designed for solving complicated scientific and commercial problems effectively,whereas mobile computing is a traditional distributed system having computing capability with mobility and adopting wireless communications. Media and Entertainment fields can take advantage from both paradigms by applying its usage in gaming applications and multimedia data management. Multimedia data has to be stored and retrieved in an efficient and effective manner to put it in use. In this paper, we proposed an application layer protocol for delivery of multimedia data in wireless girds i.e. multimedia grid protocol (MMGP). To make streaming efficient a new video compression algorithm called dWave is designed and embedded in the proposed protocol. This protocol will provide faster, reliable access and render an imperceptible QoS in delivering multimedia in wireless grid environment and tackles the challenging issues such as i) intermittent connectivity, ii) device heterogeneity, iii) weak security and iv) device mobility.Comment: 20 pages, 15 figures, Peer Reviewed Journa

    Synergizing Roadway Infrastructure Investment with Digital Infrastructure for Infrastructure-Based Connected Vehicle Applications: Review of Current Status and Future Directions

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.The safety, mobility, environmental and economic benefits of Connected and Autonomous Vehicles (CAVs) are potentially dramatic. However, realization of these benefits largely hinges on the timely upgrading of the existing transportation system. CAVs must be enabled to send and receive data to and from other vehicles and drivers (V2V communication) and to and from infrastructure (V2I communication). Further, infrastructure and the transportation agencies that manage it must be able to collect, process, distribute and archive these data quickly, reliably, and securely. This paper focuses on current digital roadway infrastructure initiatives and highlights the importance of including digital infrastructure investment alongside more traditional infrastructure investment to keep up with the auto industry's push towards this real time communication and data processing capability. Agencies responsible for transportation infrastructure construction and management must collaborate, establishing national and international platforms to guide the planning, deployment and management of digital infrastructure in their jurisdictions. This will help create standardized interoperable national and international systems so that CAV technology is not deployed in a haphazard and uncoordinated manner

    A Taxonomy of Data Grids for Distributed Data Sharing, Management and Processing

    Full text link
    Data Grids have been adopted as the platform for scientific communities that need to share, access, transport, process and manage large data collections distributed worldwide. They combine high-end computing technologies with high-performance networking and wide-area storage management techniques. In this paper, we discuss the key concepts behind Data Grids and compare them with other data sharing and distribution paradigms such as content delivery networks, peer-to-peer networks and distributed databases. We then provide comprehensive taxonomies that cover various aspects of architecture, data transportation, data replication and resource allocation and scheduling. Finally, we map the proposed taxonomy to various Data Grid systems not only to validate the taxonomy but also to identify areas for future exploration. Through this taxonomy, we aim to categorise existing systems to better understand their goals and their methodology. This would help evaluate their applicability for solving similar problems. This taxonomy also provides a "gap analysis" of this area through which researchers can potentially identify new issues for investigation. Finally, we hope that the proposed taxonomy and mapping also helps to provide an easy way for new practitioners to understand this complex area of research.Comment: 46 pages, 16 figures, Technical Repor

    Real Time Global Tests of the ALICE High Level Trigger Data Transport Framework

    Full text link
    The High Level Trigger (HLT) system of the ALICE experiment is an online event filter and trigger system designed for input bandwidths of up to 25 GB/s at event rates of up to 1 kHz. The system is designed as a scalable PC cluster, implementing several hundred nodes. The transport of data in the system is handled by an object-oriented data flow framework operating on the basis of the publisher-subscriber principle, being designed fully pipelined with lowest processing overhead and communication latency in the cluster. In this paper, we report the latest measurements where this framework has been operated on five different sites over a global north-south link extending more than 10,000 km, processing a ``real-time'' data flow.Comment: 8 pages 4 figure
    corecore