646,696 research outputs found

    spChains: A Declarative Framework for Data Stream Processing in Pervasive Applications

    Get PDF
    Pervasive applications rely on increasingly complex streams of sensor data continuously captured from the physical world. Such data is crucial to enable applications to ``understand'' the current context and to infer the right actions to perform, be they fully automatic or involving some user decisions. However, the continuous nature of such streams, the relatively high throughput at which data is generated and the number of sensors usually deployed in the environment, make direct data handling practically unfeasible. Data not only needs to be cleaned, but it must also be filtered and aggregated to relieve higher level algorithms from near real-time handling of such massive data flows. We propose here a stream-processing framework (spChains), based upon state-of-the-art stream processing engines, which enables declarative and modular composition of stream processing chains built atop of a set of extensible stream processing blocks. While stream processing blocks are delivered as a standard, yet extensible, library of application-independent processing elements, chains can be defined by the pervasive application engineering team. We demonstrate the flexibility and effectiveness of the spChains framework on two real-world applications in the energy management and in the industrial plant management domains, by evaluating them on a prototype implementation based on the Esper stream processo

    Data Provenance and Management in Radio Astronomy: A Stream Computing Approach

    Get PDF
    New approaches for data provenance and data management (DPDM) are required for mega science projects like the Square Kilometer Array, characterized by extremely large data volume and intense data rates, therefore demanding innovative and highly efficient computational paradigms. In this context, we explore a stream-computing approach with the emphasis on the use of accelerators. In particular, we make use of a new generation of high performance stream-based parallelization middleware known as InfoSphere Streams. Its viability for managing and ensuring interoperability and integrity of signal processing data pipelines is demonstrated in radio astronomy. IBM InfoSphere Streams embraces the stream-computing paradigm. It is a shift from conventional data mining techniques (involving analysis of existing data from databases) towards real-time analytic processing. We discuss using InfoSphere Streams for effective DPDM in radio astronomy and propose a way in which InfoSphere Streams can be utilized for large antennae arrays. We present a case-study: the InfoSphere Streams implementation of an autocorrelating spectrometer, and using this example we discuss the advantages of the stream-computing approach and the utilization of hardware accelerators

    Temporal Stream Algebra

    Get PDF
    Data stream management systems (DSMS) so far focus on event queries and hardly consider combined queries to both data from event streams and from a database. However, applications like emergency management require combined data stream and database queries. Further requirements are the simultaneous use of multiple timestamps after different time lines and semantics, expressive temporal relations between multiple time-stamps and exible negation, grouping and aggregation which can be controlled, i. e. started and stopped, by events and are not limited to fixed-size time windows. Current DSMS hardly address these requirements. This article proposes Temporal Stream Algebra (TSA) so as to meet the afore mentioned requirements. Temporal streams are a common abstraction of data streams and data- base relations; the operators of TSA are generalizations of the usual operators of Relational Algebra. A in-depth 'analysis of temporal relations guarantees that valid TSA expressions are non-blocking, i. e. can be evaluated incrementally. In this respect TSA differs significantly from previous algebraic approaches which use specialized operators to prevent blocking expressions on a "syntactical" level

    Stream Assessments and Water Quality Monitoring in the Cocheco River Watershed 2001 Project

    Get PDF
    The purpose of the project is to gather data and information through volunteer water quality monitoring and stream surveys in the Cocheco River watershed. The data will be analyzed and disseminated for use in watershed management planning by the Cocheco River Watershed Coalition with the watershed communities

    Using datasets from the Internet for hydrological modeling: an example from the Kntnk Menderes Basin, Turkey

    Get PDF
    River basin development / Water resources / Data collection / Models / Hydrology / Land classification / Water management / Water scarcity / Water allocation / Stream flow / Water demand / Turkey / Kntnk Menderes Basin
    corecore