6,151 research outputs found

    Data Secrecy in Distributed Storage Systems under Exact Repair

    Full text link
    The problem of securing data against eavesdropping in distributed storage systems is studied. The focus is on systems that use linear codes and implement exact repair to recover from node failures.The maximum file size that can be stored securely is determined for systems in which all the available nodes help in repair (i.e., repair degree d=n−1d=n-1, where nn is the total number of nodes) and for any number of compromised nodes. Similar results in the literature are restricted to the case of at most two compromised nodes. Moreover, new explicit upper bounds are given on the maximum secure file size for systems with d<n−1d<n-1. The key ingredients for the contribution of this paper are new results on subspace intersection for the data downloaded during repair. The new bounds imply the interesting fact that the maximum data that can be stored securely decreases exponentially with the number of compromised nodes.Comment: Submitted to Netcod 201

    Capacity and Security of Heterogeneous Distributed Storage Systems

    Full text link
    We study the capacity of heterogeneous distributed storage systems under repair dynamics. Examples of these systems include peer-to-peer storage clouds, wireless, and Internet caching systems. Nodes in a heterogeneous system can have different storage capacities and different repair bandwidths. We give lower and upper bounds on the system capacity. These bounds depend on either the average resources per node, or on a detailed knowledge of the node characteristics. Moreover, we study the case in which nodes may be compromised by an eavesdropper, and give bounds on the system secrecy capacity. One implication of our results is that symmetric repair maximizes the capacity of a homogeneous system, which justifies the model widely used in the literature.Comment: 7 pages, 2 figure

    On Secure Distributed Data Storage Under Repair Dynamics

    Full text link
    We address the problem of securing distributed storage systems against passive eavesdroppers that can observe a limited number of storage nodes. An important aspect of these systems is node failures over time, which demand a repair mechanism aimed at maintaining a targeted high level of system reliability. If an eavesdropper observes a node that is added to the system to replace a failed node, it will have access to all the data downloaded during repair, which can potentially compromise the entire information in the system. We are interested in determining the secrecy capacity of distributed storage systems under repair dynamics, i.e., the maximum amount of data that can be securely stored and made available to a legitimate user without revealing any information to any eavesdropper. We derive a general upper bound on the secrecy capacity and show that this bound is tight for the bandwidth-limited regime which is of importance in scenarios such as peer-to-peer distributed storage systems. We also provide a simple explicit code construction that achieves the capacity for this regime.Comment: 5 pages, 4 figures, to appear in Proceedings of IEEE ISIT 201

    Secure Cooperative Regenerating Codes for Distributed Storage Systems

    Full text link
    Regenerating codes enable trading off repair bandwidth for storage in distributed storage systems (DSS). Due to their distributed nature, these systems are intrinsically susceptible to attacks, and they may also be subject to multiple simultaneous node failures. Cooperative regenerating codes allow bandwidth efficient repair of multiple simultaneous node failures. This paper analyzes storage systems that employ cooperative regenerating codes that are robust to (passive) eavesdroppers. The analysis is divided into two parts, studying both minimum bandwidth and minimum storage cooperative regenerating scenarios. First, the secrecy capacity for minimum bandwidth cooperative regenerating codes is characterized. Second, for minimum storage cooperative regenerating codes, a secure file size upper bound and achievability results are provided. These results establish the secrecy capacity for the minimum storage scenario for certain special cases. In all scenarios, the achievability results correspond to exact repair, and secure file size upper bounds are obtained using min-cut analyses over a suitable secrecy graph representation of DSS. The main achievability argument is based on an appropriate pre-coding of the data to eliminate the information leakage to the eavesdropper

    Optimal Locally Repairable and Secure Codes for Distributed Storage Systems

    Full text link
    This paper aims to go beyond resilience into the study of security and local-repairability for distributed storage systems (DSS). Security and local-repairability are both important as features of an efficient storage system, and this paper aims to understand the trade-offs between resilience, security, and local-repairability in these systems. In particular, this paper first investigates security in the presence of colluding eavesdroppers, where eavesdroppers are assumed to work together in decoding stored information. Second, the paper focuses on coding schemes that enable optimal local repairs. It further brings these two concepts together, to develop locally repairable coding schemes for DSS that are secure against eavesdroppers. The main results of this paper include: a. An improved bound on the secrecy capacity for minimum storage regenerating codes, b. secure coding schemes that achieve the bound for some special cases, c. a new bound on minimum distance for locally repairable codes, d. code construction for locally repairable codes that attain the minimum distance bound, and e. repair-bandwidth-efficient locally repairable codes with and without security constraints.Comment: Submitted to IEEE Transactions on Information Theor

    Improving the Secrecy of Distributed Storage Systems using Interference Alignment

    Full text link
    Regenerating codes based on the approach of interference alignment for wireless interference channel achieve the cut-set bound for distributed storage systems. These codes provide data reliability, and perform efficient exact node repair when some node fails. Interference alignment as a concept is especially important to improve the repair efficiency of a failed node in a minimum storage regenerating (MSR) code. In addition it can improve the stored data security in presence of passive intruders. In this paper we construct a new code resilient against a threat model where a passive eavesdropper can access the data stored on a subset of nodes and the downloaded data during the repair process of a subset of failed nodes. We achieve an optimal secrecy capacity for the new explicit construction of MSR interference alignment code. Hence, we show that the eavesdropper obtains zero information from the original message stored across the distributed storage, and that we achieve a perfect secrecy.Comment: 20 pages, 3 figure
    • …
    corecore