32,402 research outputs found

    Dynamic texture recognition using time-causal and time-recursive spatio-temporal receptive fields

    Full text link
    This work presents a first evaluation of using spatio-temporal receptive fields from a recently proposed time-causal spatio-temporal scale-space framework as primitives for video analysis. We propose a new family of video descriptors based on regional statistics of spatio-temporal receptive field responses and evaluate this approach on the problem of dynamic texture recognition. Our approach generalises a previously used method, based on joint histograms of receptive field responses, from the spatial to the spatio-temporal domain and from object recognition to dynamic texture recognition. The time-recursive formulation enables computationally efficient time-causal recognition. The experimental evaluation demonstrates competitive performance compared to state-of-the-art. Especially, it is shown that binary versions of our dynamic texture descriptors achieve improved performance compared to a large range of similar methods using different primitives either handcrafted or learned from data. Further, our qualitative and quantitative investigation into parameter choices and the use of different sets of receptive fields highlights the robustness and flexibility of our approach. Together, these results support the descriptive power of this family of time-causal spatio-temporal receptive fields, validate our approach for dynamic texture recognition and point towards the possibility of designing a range of video analysis methods based on these new time-causal spatio-temporal primitives.Comment: 29 pages, 16 figure

    On statistical approaches to generate Level 3 products from satellite remote sensing retrievals

    Get PDF
    Satellite remote sensing of trace gases such as carbon dioxide (CO2_2) has increased our ability to observe and understand Earth's climate. However, these remote sensing data, specifically~Level 2 retrievals, tend to be irregular in space and time, and hence, spatio-temporal prediction is required to infer values at any location and time point. Such inferences are not only required to answer important questions about our climate, but they are also needed for validating the satellite instrument, since Level 2 retrievals are generally not co-located with ground-based remote sensing instruments. Here, we discuss statistical approaches to construct Level 3 products from Level 2 retrievals, placing particular emphasis on the strengths and potential pitfalls when using statistical prediction in this context. Following this discussion, we use a spatio-temporal statistical modelling framework known as fixed rank kriging (FRK) to obtain global predictions and prediction standard errors of column-averaged carbon dioxide based on Version 7r and Version 8r retrievals from the Orbiting Carbon Observatory-2 (OCO-2) satellite. The FRK predictions allow us to validate statistically the Level 2 retrievals globally even though the data are at locations and at time points that do not coincide with validation data. Importantly, the validation takes into account the prediction uncertainty, which is dependent both on the temporally-varying density of observations around the ground-based measurement sites and on the spatio-temporal high-frequency components of the trace gas field that are not explicitly modelled. Here, for validation of remotely-sensed CO2_2 data, we use observations from the Total Carbon Column Observing Network. We demonstrate that the resulting FRK product based on Version 8r compares better with TCCON data than that based on Version 7r.Comment: 28 pages, 10 figures, 4 table

    Measuring Membership Privacy on Aggregate Location Time-Series

    Get PDF
    While location data is extremely valuable for various applications, disclosing it prompts serious threats to individuals' privacy. To limit such concerns, organizations often provide analysts with aggregate time-series that indicate, e.g., how many people are in a location at a time interval, rather than raw individual traces. In this paper, we perform a measurement study to understand Membership Inference Attacks (MIAs) on aggregate location time-series, where an adversary tries to infer whether a specific user contributed to the aggregates. We find that the volume of contributed data, as well as the regularity and particularity of users' mobility patterns, play a crucial role in the attack's success. We experiment with a wide range of defenses based on generalization, hiding, and perturbation, and evaluate their ability to thwart the attack vis-a-vis the utility loss they introduce for various mobility analytics tasks. Our results show that some defenses fail across the board, while others work for specific tasks on aggregate location time-series. For instance, suppressing small counts can be used for ranking hotspots, data generalization for forecasting traffic, hotspot discovery, and map inference, while sampling is effective for location labeling and anomaly detection when the dataset is sparse. Differentially private techniques provide reasonable accuracy only in very specific settings, e.g., discovering hotspots and forecasting their traffic, and more so when using weaker privacy notions like crowd-blending privacy. Overall, our measurements show that there does not exist a unique generic defense that can preserve the utility of the analytics for arbitrary applications, and provide useful insights regarding the disclosure of sanitized aggregate location time-series
    • …
    corecore