661,519 research outputs found

    Data quality in reasoning

    Get PDF
    Peer reviewedPublisher PD

    Semantics-based selection of everyday concepts in visual lifelogging

    Get PDF
    Concept-based indexing, based on identifying various semantic concepts appearing in multimedia, is an attractive option for multimedia retrieval and much research tries to bridge the semantic gap between the media’s low-level features and high-level semantics. Research into concept-based multimedia retrieval has generally focused on detecting concepts from high quality media such as broadcast TV or movies, but it is not well addressed in other domains like lifelogging where the original data is captured with poorer quality. We argue that in noisy domains such as lifelogging, the management of data needs to include semantic reasoning in order to deduce a set of concepts to represent lifelog content for applications like searching, browsing or summarisation. Using semantic concepts to manage lifelog data relies on the fusion of automatically-detected concepts to provide a better understanding of the lifelog data. In this paper, we investigate the selection of semantic concepts for lifelogging which includes reasoning on semantic networks using a density-based approach. In a series of experiments we compare different semantic reasoning approaches and the experimental evaluations we report on lifelog data show the efficacy of our approach

    Iteratively Learning Embeddings and Rules for Knowledge Graph Reasoning

    Full text link
    Reasoning is essential for the development of large knowledge graphs, especially for completion, which aims to infer new triples based on existing ones. Both rules and embeddings can be used for knowledge graph reasoning and they have their own advantages and difficulties. Rule-based reasoning is accurate and explainable but rule learning with searching over the graph always suffers from efficiency due to huge search space. Embedding-based reasoning is more scalable and efficient as the reasoning is conducted via computation between embeddings, but it has difficulty learning good representations for sparse entities because a good embedding relies heavily on data richness. Based on this observation, in this paper we explore how embedding and rule learning can be combined together and complement each other's difficulties with their advantages. We propose a novel framework IterE iteratively learning embeddings and rules, in which rules are learned from embeddings with proper pruning strategy and embeddings are learned from existing triples and new triples inferred by rules. Evaluations on embedding qualities of IterE show that rules help improve the quality of sparse entity embeddings and their link prediction results. We also evaluate the efficiency of rule learning and quality of rules from IterE compared with AMIE+, showing that IterE is capable of generating high quality rules more efficiently. Experiments show that iteratively learning embeddings and rules benefit each other during learning and prediction.Comment: This paper is accepted by WWW'1

    Toolboxes and handing students a hammer: The effects of cueing and instruction on getting students to think critically

    Full text link
    Developing critical thinking skills is a common goal of an undergraduate physics curriculum. How do students make sense of evidence and what do they do with it? In this study, we evaluated students' critical thinking behaviors through their written notebooks in an introductory physics laboratory course. We compared student behaviors in the Structured Quantitative Inquiry Labs (SQILabs) curriculum to a control group and evaluated the fragility of these behaviors through procedural cueing. We found that the SQILabs were generally effective at improving the quality of students' reasoning about data and making decisions from data. These improvements in reasoning and sensemaking were thwarted, however, by a procedural cue. We describe these changes in behavior through the lens of epistemological frames and task orientation, invoked by the instructional moves

    An approach for uncertainty aggregation using generalised conjunction/disjunction aggregators

    Get PDF
    Decision Support Systems are often used in the area of system evaluation. The quality of the output of such a system is only as good as the quality of the data that is used as input. Uncertainty on data, if not taken into account, can lead to evaluation results that are not representative. In this paper, we propose a technique to extend Generalised Con- junction/Disjunction aggregators to deal with un- certainty in Decision Support Systems. We first de- fine the logic properties of uncertainty aggregation through reasoning on strict aggregators and after- wards extend this logic to partial aggregators

    From research to practice: The case of mathematical reasoning

    Get PDF
    Mathematical proficiency is a key goal of the Australian Mathematics curriculum. However, international assessments of mathematical literacy suggest that mathematical reasoning and problem solving are areas of difficulty for Australian students. Given the efficacy of teaching informed by quality assessment data, a recent study focused on the development of evidence-based Learning Progressions for Algebraic, Spatial and Statistical Reasoning that can be used to identify where students are in their learning and where they need to go to next. Importantly, they can also be used to generate targeted teaching advice and activities to help teachers progress student learning. This paper explores the processes involved in taking the research to practice

    Predictive intelligence to the edge through approximate collaborative context reasoning

    Get PDF
    We focus on Internet of Things (IoT) environments where a network of sensing and computing devices are responsible to locally process contextual data, reason and collaboratively infer the appearance of a specific phenomenon (event). Pushing processing and knowledge inference to the edge of the IoT network allows the complexity of the event reasoning process to be distributed into many manageable pieces and to be physically located at the source of the contextual information. This enables a huge amount of rich data streams to be processed in real time that would be prohibitively complex and costly to deliver on a traditional centralized Cloud system. We propose a lightweight, energy-efficient, distributed, adaptive, multiple-context perspective event reasoning model under uncertainty on each IoT device (sensor/actuator). Each device senses and processes context data and infers events based on different local context perspectives: (i) expert knowledge on event representation, (ii) outliers inference, and (iii) deviation from locally predicted context. Such novel approximate reasoning paradigm is achieved through a contextualized, collaborative belief-driven clustering process, where clusters of devices are formed according to their belief on the presence of events. Our distributed and federated intelligence model efficiently identifies any localized abnormality on the contextual data in light of event reasoning through aggregating local degrees of belief, updates, and adjusts its knowledge to contextual data outliers and novelty detection. We provide comprehensive experimental and comparison assessment of our model over real contextual data with other localized and centralized event detection models and show the benefits stemmed from its adoption by achieving up to three orders of magnitude less energy consumption and high quality of inference
    corecore