407,395 research outputs found

    Data Processing Modeling in Decision Support Systems.

    Get PDF
    Due to the advancement of both, information technology in general, and databases in particular; data storage devices are becoming cheaper and data processing speed is increasing. As result of this, organizations tend to store large volumes of data holding great potential information. Decision Support Systems, DSS try to use the stored data to obtain valuable information for organizations. In this paper, we use both data models and use cases to represent the functionality of data processing in DSS following Software Engineering processes. We propose a methodology to develop DSS in the Analysis phase, respective of data processing modeling. We have used, as a starting point, a data model adapted to the semantics involved in multidimensional databases or data warehouses, DW. Also, we have taken an algorithm that provides us with all the possible ways to automatically cross check multidimensional model data. Using the aforementioned, we propose diagrams and descriptions of use cases, which can be considered as patterns representing the DSS functionality, in regard to DW data processing, DW on which DSS are based. We highlight the reusability and automation benefits that this can be achieved, and we think this study can serve as a guide in the development of DSS

    Unified Approach in the DSS Development Process

    Get PDF
    The structure of today's decision support environment become very complex due to new generation of Business Intelligence applications and technologies like Data Warehouse, OLAP (On Line Analytical Processing) and Data Mining. In this respect DSS development process are not simple and needs an adequate methodology or framework able to manage different tools and platforms to achieve manager's requirements. The DSS development process must be view like a unified and iterative set of activities and operations. The new techniques based on Unified Process (UP) methodology and UML (Unified Modeling Language) it seems to be appropriate for DSS development using prototyping and RAD (Rapid Application Development) techniques. In this paper we present a conceptual framework for development and integrate Decision Support Systems using Unified Process Methodology and UML.Decision Support Systems, Unified Process, UML, Prototyping, DSS Tools

    A novel multidimensional model for the OLAP on documents : modeling, generation and implementation

    Get PDF
    International audienceAs the amount of textual information grows explosively in various kinds of business systems, it becomes more and more essential to analyze both structured data and unstructured textual data simultaneously. However information contained in non structured data (documents and so on) is only partially used in business intelligence (BI). Indeed On-Line Analytical Processing (OLAP) cubes which are the main support of BI analysis in decision support systems have focused on structured data. This is the reason why OLAP is being extended to unstructured textual data. In this paper we introduce the innovative “Diamond” multidimensional model that will serve as a basis for semantic OLAP on XML documents and then we describe the meta modeling, generation and implementation of a the Diamond multidimensional model

    Data Mining Technology Used in an Internet of Things-Based Decision Support System for Information Processing Intelligent Manufacturing

    Get PDF
    In recent years, database technology has improved significantly, and database management systems have gained widespread adoption. As a result, the volume of data saved across numerous databases has increased exponentially. However, the vast majority of information is hidden beneath this mountain of data. The goal of this study is to get a comprehensive understanding of the decision information system employed in the Internet of Things for intelligent manufacturing data processing. The proposed Decision support system (DSS) information processing is accomplished through the use of an IoT-based intelligent manufacturing data mining model. Numerous DM algorithms that are frequently encountered are analyzed, including the ARS and Apriori Algorithm (AA). The Decision Tree data mining algorithm is investigated, as is the generation of several Decision Trees and the pruning algorithm for digital twins. The findings demonstrate that data mining technology is capable of analyzing statistical data from a variety of angles and perspectives by modeling, classifying, and grouping large amounts of data as well as discovering correlations between them. Additionally, statistical work involves the calculation of data and the use of their correlations to aid in decision analysis. The proposed theoretical framework demonstrates how DSS-integrated components can work cooperatively in Intelligent Manufacturing to define a stable data flow within the Internet of Things. Particular emphasis is placed on conceptualizing the decision support system's integrated performance

    Representation of Aggregation Knowledge in OLAP Systems

    Get PDF
    Decision support systems are mainly based on multidimensional modeling. Using On-Line Analytical Processing (OLAP) tools, decision makers navigate through and analyze multidimensional data. Typically, users need to analyze data at different aggregation levels, using OLAP operators such as roll-up and drill-down. Roll-up operators decrease the details of the measure, aggregating it along the dimension hierarchy. Conversely, drill-down operators increase the details of the measure. As a consequence, dimensions hierarchies play a central role in knowledge representation. More precisely, since aggregation hierarchies are widely used to support data aggregation, aggregation knowledge should be adequately represented in conceptual multidimensional models, and mapped in subsequent logical and physical models. However, current conceptual multidimensional models poorly represent aggregation knowledge, which (1) has a complex structure and dynamics and (2) is highly contextual. In order to account for the characteristics of this knowledge, we propose to represent it with objects and rules. Static aggregation knowledge is represented using UML class diagrams, while rules, which represent the dynamics (i.e. how aggregation may be performed depending on context), are represented using the Production Rule Representation (PRR) language. The latter allows us to incorporate dynamic aggregation knowledge. We argue that this representation of aggregation knowledge allows an early modeling of user requirements in a decision support system project. In order to illustrate the applicability and benefits of our approach, we exemplify the production rules and present an application scenario

    Dual-Use Space Technology Transfer Conference and Exhibition

    Get PDF
    This document contains papers presented at the Dual-Use Space Technology Transfer Conference and Exhibition held at the Johnson Space Center February 1-3, 1994. Possible technology transfers covered during the conference were in the areas of information access; innovative microwave and optical applications; materials and structures; marketing and barriers; intelligent systems; human factors and habitation; communications and data systems; business process and technology transfer; software engineering; biotechnology and advanced bioinstrumentation; communications signal processing and analysis; new ways of doing business; medical care; applications derived from control center data systems; human performance evaluation; technology transfer methods; mathematics, modeling, and simulation; propulsion; software analysis and decision tools systems/processes in human support technology; networks, control centers, and distributed systems; power; rapid development perception and vision technologies; integrated vehicle health management; automation technologies; advanced avionics; ans robotics technologies. More than 77 papers, 20 presentations, and 20 exhibits covering various disciplines were presented b experts from NASA, universities, and industry

    Building Information Modeling and Building Performance Simulation-Based Decision Support Systems for Improved Built Heritage Operation

    Get PDF
    Adapting outdated building stocks’ operations to meet current environmental and economic demands poses significant challenges that, to be faced, require a shift toward digitalization in the architecture, engineering, construction, and operation sectors. Digital tools capable of acquiring, structuring, sharing, processing, and visualizing built assets’ data in the form of knowledge need to be conceptualized and developed to inform asset managers in decision-making and strategic planning. This paper explores how building information modeling and building performance simulation technologies can be integrated into digital decision support systems (DSS) to make building data accessible and usable by non-digital expert operators through user-friendly services. The method followed to develop the digital DSS is illustrated and then demonstrated with a simulation-based application conducted on the heritage case study of the Faculty of Engineering in Bologna, Italy. The analysis allows insights into the building’s energy performance at the space and hour scale and explores its relationship with the planned occupancy through a data visualization approach. In addition, the conceptualization of the DSS within a digital twin vision lays the foundations for future extensions to other technologies and data, including, for example, live sensor measurements, occupant feedback, and forecasting algorithms

    Object oriented partitioning for a medical vocabulary based on semantic network

    Get PDF
    Computers have become ubiquitous and indispensable part of everyday life both for personal use and in the workplace. Medicine is one of the few domains that has not fully adopted computerization. One impediment to this emanates from a communication gap between the computer science professional and the medical professional. Besides, medical terminology is full of synonyms and medical professionals use them according to their personal preferences. This lack of common terminology has prevented sharing of knowledge and automating data processing, resulting in the healthcare information explosion. Semantic network models have been developed to represent medical concepts and to provide a common repository of medical terms. These networks are huge collections of terms and deal with the concepts individually. The semantic models, however, have not resolved management and comprehension difficulties associated with large number of terms and their complex semantics. Object-Oriented modeling, as demonstrated in this thesis, provides a mature technology to model complex concepts for a computerized medical vocabulary. Object class abstraction, that represents objects in the same context, promises to solve the comprehension and management problems. Such a vocabulary would facilitate exchange of information, data processing and building decision support systems
    • …
    corecore