763 research outputs found

    Highly reliable, low-latency communication in low-power wireless networks

    Get PDF
    Low-power wireless networks consist of spatially distributed, resource-constrained devices – also referred to as nodes – that are typically equipped with integrated or external sensors and actuators. Nodes communicate with each other using wireless transceivers, and thus, relay data – e. g., collected sensor values or commands for actuators – cooperatively through the network. This way, low-power wireless networks can support a plethora of different applications, including, e. g., monitoring the air quality in urban areas or controlling the heating, ventilation and cooling of large buildings. The use of wireless communication in such monitoring and actuating applications allows for a higher flexibility and ease of deployment – and thus, overall lower costs – compared to wired solutions. However, wireless communication is notoriously error-prone. Message losses happen often and unpredictably, making it challenging to support applications requiring both high reliability and low latency. Highly reliable, low-latency communication – along with high energy-efficiency – are, however, key requirements to support several important application scenarios and most notably the open-/closed-loop control functions found in e. g., industry and factory automation applications. Communication protocols that rely on synchronous transmissions have been shown to be able to overcome this limitation. These protocols depart from traditional single-link transmissions and do not attempt to avoid concurrent transmissions from different nodes to prevent collisions. On the contrary, they make nodes send the same message at the same time over several paths. Phenomena like constructive interference and capture then ensure that messages are received correctly with high probability. While many approaches relying on synchronous transmissions have been presented in the literature, two important aspects received only little consideration: (i) reliable operation in harsh environments and (ii) support for event-based data traffic. This thesis addresses these two open challenges and proposes novel communication protocols to overcome them

    Feedback Control Goes Wireless: Guaranteed Stability over Low-power Multi-hop Networks

    Full text link
    Closing feedback loops fast and over long distances is key to emerging applications; for example, robot motion control and swarm coordination require update intervals of tens of milliseconds. Low-power wireless technology is preferred for its low cost, small form factor, and flexibility, especially if the devices support multi-hop communication. So far, however, feedback control over wireless multi-hop networks has only been shown for update intervals on the order of seconds. This paper presents a wireless embedded system that tames imperfections impairing control performance (e.g., jitter and message loss), and a control design that exploits the essential properties of this system to provably guarantee closed-loop stability for physical processes with linear time-invariant dynamics. Using experiments on a cyber-physical testbed with 20 wireless nodes and multiple cart-pole systems, we are the first to demonstrate and evaluate feedback control and coordination over wireless multi-hop networks for update intervals of 20 to 50 milliseconds.Comment: Accepted final version to appear in: 10th ACM/IEEE International Conference on Cyber-Physical Systems (with CPS-IoT Week 2019) (ICCPS '19), April 16--18, 2019, Montreal, QC, Canad

    Medium Access Control in Energy Harvesting - Wireless Sensor Networks

    Get PDF

    Continuous Monitoring meets Synchronous Transmissions and In-Network Aggregation

    Get PDF
    Continuously monitoring sensor readings is an important building block for many IoT applications. The literature offers resourceful methods that minimize the amount of communication required for continuous monitoring, where Geometric Monitoring (GM) is one of the most generally applicable ones. However, GM has unique communication requirements that require specialized network protocols to unlock the full potential of the algorithm. In this work, we show how application and protocol co-design can improve the real-life performance of GM, making it an application of practical value for real IoT deployments. We orchestrate the communication of GM to utilize the properties of a state-of-the-art wireless protocol (Crystal) that relies on synchronous transmissions and is designed for aperiodic traffic, as needed by GM. We bridge the existing gap between the capabilities of the protocol and the requirements of GM, especially in the case of periods of heavy communication. We do so by introducing an in-network aggregation technique relying on latent opportunities for aggregation that we exploit in Crystal\u27s design, allowing us to reliably monitor duplicate-sensitive aggregate functions, such as sum, average or variance. Our results from testbed experiments with a publicly available dataset show that the combination of GM and Crystal results in a very small duty-cycle, a 2.2x - 3.2x improvement compared to the baseline and up to 10x compared to previous work. We also show that our in-network aggregation technique reduces the duty-cycle by up to 1.38x
    • …
    corecore