1,440 research outputs found

    Robust image and video coding with pyramid vector quantisation

    Get PDF

    Optimal packetisation of MPEG-4 using RTP over mobile networks

    Get PDF
    The introduction of third-generation wireless networks should result in real-time mobile video communications becoming a reality. Delivery of such video is likely to be facilitated by the realtime transport protocol (RTP). Careful packetisation of the video data is necessary to ensure the optimal trade-off between channel utilisation and error robustness. Theoretical analyses for two basic schemes of MPEG-4 data encapsulation within RTP packets are presented. Simulations over a GPRS (general packet radio service) network are used to validate the analysis of the most efficient scheme. Finally, a motion adaptive system for deriving MPEG-4 video packet sizes is presented. Further simulations demonstrate the benefits of the adaptive system

    Layered Video Transmission on Adaptive OFDM Wireless Systems

    Get PDF
    Future wireless video transmission systems will consider orthogonal frequency division multiplexing (OFDM) as the basic modulation technique due to its robustness and low complexity implementation in the presence of frequency-selective channels. Recently, adaptive bit loading techniques have been applied to OFDM showing good performance gains in cable transmission systems. In this paper a multilayer bit loading technique, based on the so called "ordered subcarrier selection algorithm," is proposed and applied to a Hiperlan2-like wireless system at 5 GHz for efficient layered multimedia transmission. Different schemes realizing unequal error protection both at coding and modulation levels are compared. The strong impact of this technique in terms of video quality is evaluated for MPEG-4 video transmission

    A Review of Error Resilience Techniques in Video Streaming

    Get PDF
    Abstract-Delivering video data of satisfactory quality over unreliable networks -such as the internet or wireless networks -is a demanding area which has received significant attention of the research community over the past few years. Given the fact that packet loss is inevitable and therefore the presence of errors granted, the effort is directed towards limiting the effect of these errors. A number of techniques have been developed to address this issue. This paper aims to summarize the most significant approaches for: error resilience, error concealment and joint encoder-decoder error control techniques, and to provide a thorough discussion of the benefits and drawbacks of these error control methods. Furthermore, two case studies of error resilience utilization are presented, namely Ad-hoc networks and Multimedia Broadcast Multiple Services (MBMS)

    Bit-error resilient packetization for streaming h.264/avc video

    Full text link

    QoS in Telemedicine

    Get PDF

    Error-resilient coding tools in MPEG-4.

    Get PDF
    by Cheng Shu Ling.Thesis submitted in: July 1997.Thesis (M.Phil.)--Chinese University of Hong Kong, 1998.Includes bibliographical references (leaves 70-71).Abstract also in Chinese.Chapter Chapter 1 --- Introduction --- p.1Chapter 1.1 --- Image Coding Standard: JPEG --- p.1Chapter 1.2 --- Video Coding Standard: MPEG --- p.6Chapter 1.2.1 --- MPEG history --- p.6Chapter 1.2.2 --- MPEG video compression algorithm overview --- p.8Chapter 1.2.3 --- More MPEG features --- p.10Chapter 1.3 --- Summary --- p.17Chapter Chapter 2 --- Error Resiliency --- p.18Chapter 2.1 --- Introduction --- p.18Chapter 2.2 --- Traditional approaches --- p.19Chapter 2.2.1 --- Channel coding --- p.19Chapter 2.2.2 --- ARQ --- p.20Chapter 2.2.3 --- Multi-layer coding --- p.20Chapter 2.2.4 --- Error Concealment --- p.20Chapter 2.3 --- MPEG-4 work on error resilience --- p.21Chapter 2.3.1 --- Resynchronization --- p.21Chapter 2.3.2 --- Data Recovery --- p.25Chapter 2.3.3 --- Error Concealment --- p.28Chapter 2.4 --- Summary --- p.29Chapter Chapter 3 --- Fixed length codes --- p.30Chapter 3.1 --- Introduction --- p.30Chapter 3.2 --- Tunstall code --- p.31Chapter 3.3 --- Lempel-Ziv code --- p.34Chapter 3.3.1 --- LZ-77 --- p.35Chapter 3.3.2 --- LZ-78 --- p.36Chapter 3.4 --- Simulation --- p.38Chapter 3.4.1 --- Experiment Setup --- p.38Chapter 3.4.2 --- Results --- p.39Chapter 3.4.3 --- Concluding Remarks --- p.42Chapter Chapter 4 --- Self-Synchronizable codes --- p.44Chapter 4.1 --- Introduction --- p.44Chapter 4.2 --- Scholtz synchronizable code --- p.45Chapter 4.2.1 --- Definition --- p.45Chapter 4.2.2 --- Construction procedure --- p.45Chapter 4.2.3 --- Synchronizer --- p.48Chapter 4.2.4 --- Effects of errors --- p.51Chapter 4.3 --- Simulation --- p.52Chapter 4.3.1 --- Experiment Setup --- p.52Chapter 4.3.2 --- Results --- p.56Chapter 4.4 --- Concluding Remarks --- p.68Chapter Chapter 5 --- Conclusions --- p.69References --- p.7

    Irregular Variable Length Coding

    Get PDF
    In this thesis, we introduce Irregular Variable Length Coding (IrVLC) and investigate its applications, characteristics and performance in the context of digital multimedia broadcast telecommunications. During IrVLC encoding, the multimedia signal is represented using a sequence of concatenated binary codewords. These are selected from a codebook, comprising a number of codewords, which, in turn, comprise various numbers of bits. However, during IrVLC encoding, the multimedia signal is decomposed into particular fractions, each of which is represented using a different codebook. This is in contrast to regular Variable Length Coding (VLC), in which the entire multimedia signal is encoded using the same codebook. The application of IrVLCs to joint source and channel coding is investigated in the context of a video transmission scheme. Our novel video codec represents the video signal using tessellations of Variable-Dimension Vector Quantisation (VDVQ) tiles. These are selected from a codebook, comprising a number of tiles having various dimensions. The selected tessellation of VDVQ tiles is signalled using a corresponding sequence of concatenated codewords from a Variable Length Error Correction (VLEC) codebook. This VLEC codebook represents a specific joint source and channel coding case of VLCs, which facilitates both compression and error correction. However, during video encoding, only particular combinations of the VDVQ tiles will perfectly tessellate, owing to their various dimensions. As a result, only particular sub-sets of the VDVQ codebook and, hence, of the VLEC codebook may be employed to convey particular fractions of the video signal. Therefore, our novel video codec can be said to employ IrVLCs. The employment of IrVLCs to facilitate Unequal Error Protection (UEP) is also demonstrated. This may be applied when various fractions of the source signal have different error sensitivities, as is typical in audio, speech, image and video signals, for example. Here, different VLEC codebooks having appropriately selected error correction capabilities may be employed to encode the particular fractions of the source signal. This approach may be expected to yield a higher reconstruction quality than equal protection in cases where the various fractions of the source signal have different error sensitivities. Finally, this thesis investigates the application of IrVLCs to near-capacity operation using EXtrinsic Information Transfer (EXIT) chart analysis. Here, a number of component VLEC codebooks having different inverted EXIT functions are employed to encode particular fractions of the source symbol frame. We show that the composite inverted IrVLC EXIT function may be obtained as a weighted average of the inverted component VLC EXIT functions. Additionally, EXIT chart matching is employed to shape the inverted IrVLC EXIT function to match the EXIT function of a serially concatenated inner channel code, creating a narrow but still open EXIT chart tunnel. In this way, iterative decoding convergence to an infinitesimally low probability of error is facilitated at near-capacity channel SNRs
    corecore