1,819 research outputs found

    Modelling in oral anticoagulation treatment

    Get PDF

    Geriatric Patient Safety Indicators Based on Linked Administrative Health Data to Assess Anticoagulant-Related Thromboembolic and Hemorrhagic Adverse Events in Older Inpatients: A Study Proposal.

    Get PDF
    Frail older people with multiple interacting conditions, polypharmacy, and complex care needs are particularly exposed to health care-related adverse events. Among these, anticoagulant-related thromboembolic and hemorrhagic events are particularly frequent and serious in older inpatients. The growing use of anticoagulants in this population and their substantial risk of toxicity and inefficacy have therefore become an important patient safety and public health concern worldwide. Anticoagulant-related adverse events and the quality of anticoagulation management should thus be routinely assessed to improve patient safety in vulnerable older inpatients. This project aims to develop and validate a set of outcome and process indicators based on linked administrative health data (ie, insurance claims data linked to hospital discharge data) assessing older inpatient safety related to anticoagulation in both Switzerland and France, and enabling comparisons across time and among hospitals, health territories, and countries. Geriatric patient safety indicators (GPSIs) will assess anticoagulant-related adverse events. Geriatric quality indicators (GQIs) will evaluate the management of anticoagulants for the prevention and treatment of arterial or venous thromboembolism in older inpatients. GPSIs will measure cumulative incidences of thromboembolic and bleeding adverse events based on hospital discharge data linked to insurance claims data. Using linked administrative health data will improve GPSI risk adjustment on patients' conditions that are present at admission and will capture in-hospital and postdischarge adverse events. GQIs will estimate the proportion of index hospital stays resulting in recommended anticoagulation at discharge and up to various time frames based on the same electronic health data. The GPSI and GQI development and validation process will comprise 6 stages: (1) selection and specification of candidate indicators, (2) definition of administrative data-based algorithms, (3) empirical measurement of indicators using linked administrative health data, (4) validation of indicators, (5) analyses of geographic and temporal variations for reliable and valid indicators, and (6) data visualization. Study populations will consist of 166,670 Swiss and 5,902,037 French residents aged 65 years and older admitted to an acute care hospital at least once during the 2012-2014 period and insured for at least 1 year before admission and 1 year after discharge. We will extract Swiss data from the Helsana Group data warehouse and French data from the national health insurance information system (SNIIR-AM). The study has been approved by Swiss and French ethics committees and regulatory organizations for data protection. Validated GPSIs and GQIs should help support and drive quality and safety improvement in older inpatients, inform health care stakeholders, and enable international comparisons. We discuss several limitations relating to the representativeness of study populations, accuracy of administrative health data, methods used for GPSI criterion validity assessment, and potential confounding bias in comparisons based on GQIs, and we address these limitations to strengthen study feasibility and validity

    Rates of Potentially Inappropriate Dosing of Direct-Acting Oral Anticoagulants and Associations With Geriatric Conditions Among Older Patients With Atrial Fibrillation: The SAGE-AF Study

    Get PDF
    Background: Direct-acting oral anticoagulant (DOAC) dosing guidelines for atrial fibrillation recommend dose alteration based on age, renal function, body weight, and drug-drug interactions. There is paucity of data describing the frequency and factors associated with prescription of potentially inappropriate doses. Methods and Results: In the ongoing SAGE-AF (Systematic Assessment of Geriatric Elements in Atrial Fibrillation) study, we performed geriatric assessments (frailty, cognitive impairment, sensory impairments, social isolation, and depression) for participants with atrial fibrillation (age \u3e /=65 years, CHA2DS2VASc \u3e /=2, no anticoagulant contraindications). We developed an algorithm to analyze DOAC dose appropriateness accounting for drug-drug interactions, age, renal function, and body weight. We also examined whether geriatric impairments were related to inappropriate dosing. Of 1064 patients prescribed anticoagulants, 460 received a DOAC. Participants were aged 74+/-7 years, 49% were women, and 82% were white. A quarter (23%; n=105) of participants received inappropriate DOAC dose, of whom 82 (78%) were underdosed and 23 (22%) were overdosed. Among participants receiving an inappropriate dose, 12 (11%) were identified using the drug-drug interactions criteria and would have otherwise been misclassified. In multivariable regression analyses, older age, higher CHA2DS2VASc score, and history of renal failure were associated with inappropriate DOAC dosing (P \u3c 0.05). Geriatric conditions were not associated with inappropriate dosing. Conclusions: In this cohort, over 20% of older patients with atrial fibrillation treated with DOACs were prescribed an inappropriate dose, with most being underdosed. Drug-drug interactions were common. Factors that influence prescription of guideline-nonadherent doses may be perception of higher bleeding risk or presence of renal failure in addition to lack of familiarity with dosing guidelines

    Facilitating and Enhancing Biomedical Knowledge Translation: An in Silico Approach to Patient-centered Pharmacogenomic Outcomes Research

    Get PDF
    Current research paradigms such as traditional randomized control trials mostly rely on relatively narrow efficacy data which results in high internal validity and low external validity. Given this fact and the need to address many complex real-world healthcare questions in short periods of time, alternative research designs and approaches should be considered in translational research. In silico modeling studies, along with longitudinal observational studies, are considered as appropriate feasible means to address the slow pace of translational research. Taking into consideration this fact, there is a need for an approach that tests newly discovered genetic tests, via an in silico enhanced translational research model (iS-TR) to conduct patient-centered outcomes research and comparative effectiveness research studies (PCOR CER). In this dissertation, it was hypothesized that retrospective EMR analysis and subsequent mathematical modeling and simulation prediction could facilitate and accelerate the process of generating and translating pharmacogenomic knowledge on comparative effectiveness of anticoagulation treatment plan(s) tailored to well defined target populations which eventually results in a decrease in overall adverse risk and improve individual and population outcomes. To test this hypothesis, a simulation modeling framework (iS-TR) was proposed which takes advantage of the value of longitudinal electronic medical records (EMRs) to provide an effective approach to translate pharmacogenomic anticoagulation knowledge and conduct PCOR CER studies. The accuracy of the model was demonstrated by reproducing the outcomes of two major randomized clinical trials for individualizing warfarin dosing. A substantial, hospital healthcare use case that demonstrates the value of iS-TR when addressing real world anticoagulation PCOR CER challenges was also presented
    corecore