12,002 research outputs found

    Secret charing vs. encryption-based techniques for privacy preserving data mining

    Get PDF
    Privacy preserving querying and data publishing has been studied in the context of statistical databases and statistical disclosure control. Recently, large-scale data collection and integration efforts increased privacy concerns which motivated data mining researchers to investigate privacy implications of data mining and how data mining can be performed without violating privacy. In this paper, we first provide an overview of privacy preserving data mining focusing on distributed data sources, then we compare two technologies used in privacy preserving data mining. The first technology is encryption based, and it is used in earlier approaches. The second technology is secret-sharing which is recently being considered as a more efficient approach

    Privacy-preserving scoring of tree ensembles : a novel framework for AI in healthcare

    Get PDF
    Machine Learning (ML) techniques now impact a wide variety of domains. Highly regulated industries such as healthcare and finance have stringent compliance and data governance policies around data sharing. Advances in secure multiparty computation (SMC) for privacy-preserving machine learning (PPML) can help transform these regulated industries by allowing ML computations over encrypted data with personally identifiable information (PII). Yet very little of SMC-based PPML has been put into practice so far. In this paper we present the very first framework for privacy-preserving classification of tree ensembles with application in healthcare. We first describe the underlying cryptographic protocols that enable a healthcare organization to send encrypted data securely to a ML scoring service and obtain encrypted class labels without the scoring service actually seeing that input in the clear. We then describe the deployment challenges we solved to integrate these protocols in a cloud based scalable risk-prediction platform with multiple ML models for healthcare AI. Included are system internals, and evaluations of our deployment for supporting physicians to drive better clinical outcomes in an accurate, scalable, and provably secure manner. To the best of our knowledge, this is the first such applied framework with SMC-based privacy-preserving machine learning for healthcare

    Semi-Trusted Mixer Based Privacy Preserving Distributed Data Mining for Resource Constrained Devices

    Get PDF
    In this paper a homomorphic privacy preserving association rule mining algorithm is proposed which can be deployed in resource constrained devices (RCD). Privacy preserved exchange of counts of itemsets among distributed mining sites is a vital part in association rule mining process. Existing cryptography based privacy preserving solutions consume lot of computation due to complex mathematical equations involved. Therefore less computation involved privacy solutions are extremely necessary to deploy mining applications in RCD. In this algorithm, a semi-trusted mixer is used to unify the counts of itemsets encrypted by all mining sites without revealing individual values. The proposed algorithm is built on with a well known communication efficient association rule mining algorithm named count distribution (CD). Security proofs along with performance analysis and comparison show the well acceptability and effectiveness of the proposed algorithm. Efficient and straightforward privacy model and satisfactory performance of the protocol promote itself among one of the initiatives in deploying data mining application in RCD.Comment: IEEE Publication format, International Journal of Computer Science and Information Security, IJCSIS, Vol. 8 No. 1, April 2010, USA. ISSN 1947 5500, http://sites.google.com/site/ijcsis

    Protecting privacy of users in brain-computer interface applications

    Get PDF
    Machine learning (ML) is revolutionizing research and industry. Many ML applications rely on the use of large amounts of personal data for training and inference. Among the most intimate exploited data sources is electroencephalogram (EEG) data, a kind of data that is so rich with information that application developers can easily gain knowledge beyond the professed scope from unprotected EEG signals, including passwords, ATM PINs, and other intimate data. The challenge we address is how to engage in meaningful ML with EEG data while protecting the privacy of users. Hence, we propose cryptographic protocols based on secure multiparty computation (SMC) to perform linear regression over EEG signals from many users in a fully privacy-preserving(PP) fashion, i.e., such that each individual's EEG signals are not revealed to anyone else. To illustrate the potential of our secure framework, we show how it allows estimating the drowsiness of drivers from their EEG signals as would be possible in the unencrypted case, and at a very reasonable computational cost. Our solution is the first application of commodity-based SMC to EEG data, as well as the largest documented experiment of secret sharing-based SMC in general, namely, with 15 players involved in all the computations

    ARPA Whitepaper

    Get PDF
    We propose a secure computation solution for blockchain networks. The correctness of computation is verifiable even under malicious majority condition using information-theoretic Message Authentication Code (MAC), and the privacy is preserved using Secret-Sharing. With state-of-the-art multiparty computation protocol and a layer2 solution, our privacy-preserving computation guarantees data security on blockchain, cryptographically, while reducing the heavy-lifting computation job to a few nodes. This breakthrough has several implications on the future of decentralized networks. First, secure computation can be used to support Private Smart Contracts, where consensus is reached without exposing the information in the public contract. Second, it enables data to be shared and used in trustless network, without disclosing the raw data during data-at-use, where data ownership and data usage is safely separated. Last but not least, computation and verification processes are separated, which can be perceived as computational sharding, this effectively makes the transaction processing speed linear to the number of participating nodes. Our objective is to deploy our secure computation network as an layer2 solution to any blockchain system. Smart Contracts\cite{smartcontract} will be used as bridge to link the blockchain and computation networks. Additionally, they will be used as verifier to ensure that outsourced computation is completed correctly. In order to achieve this, we first develop a general MPC network with advanced features, such as: 1) Secure Computation, 2) Off-chain Computation, 3) Verifiable Computation, and 4)Support dApps' needs like privacy-preserving data exchange
    corecore