11,757 research outputs found

    Options for a lunar base surface architecture

    Get PDF
    The Planet Surface Systems Office at the NASA Johnson Space Center has participated in an analysis of the Space Exploration Initiative architectures described in the Synthesis Group report. This effort involves a Systems Engineering and Integration effort to define point designs for evolving lunar and Mars bases that support substantial science, exploration, and resource production objectives. The analysis addresses systems-level designs; element requirements and conceptual designs; assessments of precursor and technology needs; and overall programmatics and schedules. This paper focuses on the results of the study of the Space Resource Utilization Architecture. This architecture develops the capability to extract useful materials from the indigenous resources of the Moon and Mars. On the Moon, a substantial infrastructure is emplaced which can support a crew of up to twelve. Two major process lines are developed: one produces oxygen, ceramics, and metals; the other produces hydrogen, helium, and other volatiles. The Moon is also used for a simulation of a Mars mission. Significant science capabilities are established in conjunction with resource development. Exploration includes remote global surveys and piloted sorties of local and regional areas. Science accommodations include planetary science, astronomy, and biomedical research. Greenhouses are established to provide a substantial amount of food needs

    An Alarm Method for a Loose Parts Monitoring System

    Get PDF

    Space resources. Overview

    Get PDF
    Space resources must be used to support life on the Moon and in the exploration of Mars. Just as the pioneers applied the tools they brought with them to resources they found along the way rather than trying to haul all their needs over a long supply line, so too must space travelers apply their high technology tools to local resources. This overview describes the findings of a study on the use of space resources in the development of future space activities and defines the necessary research and development that must precede the practical utilization of these resources. Space resources considered included lunar soil, oxygen derived from lunar soil, material retrieved from near-Earth asteroids, abundant sunlight, low gravity, and high vacuum. The study participants analyzed the direct use of these resources, the potential demand for products from them, the techniques for retrieving and processing space resources, the necessary infrastructure, and the economic tradeoffs

    Hydrogeological challenges in a low carbon economy

    Get PDF
    Hydrogeology has traditionally been regarded as the province of the water industry, but it is increasingly finding novel applications in the energy sector. Hydrogeology has a longstanding role in geothermal energy exploration and management. Although aquifer management methods can be directly applied to most high-enthalpy geothermal reservoirs, hydrogeochemical inference techniques differ somewhat owing to peculiarities of high-temperature processes. Hydrogeological involvement in the development of ground-coupled heating and cooling systems using heat pumps has led to the emergence of the sub-discipline now known as thermogeology. The patterns of groundwater flow and heat transport are closely analogous and can thus be analysed using very similar techniques. Without resort to heat pumps, groundwater is increasingly being pumped to provide cooling for large buildings; the renewability of such systems relies on accurate prediction and management of thermal breakthrough from reinjection to production boreholes. Hydrogeological analysis can contribute to quantification of accidental carbon emissions arising from disturbance of groundwater-fed peatland ecosystems during wind farm construction. Beyond renewables, key applications of hydrogeology are to be found in the nuclear sector, and in the sunrise industries of unconventional gas and carbon capture and storage, with high temperatures attained during underground coal gasification requiring geothermal technology transfer

    English for Study and Work: Coursebook in 4 books. Book 2 Obtaining and Processing Information for Specific Purposes

    Get PDF
    Подано всі види діяльності студентів з вивчення англійської мови, спрямовані на розвиток мовної поведінки, необхідної для ефективного спілкування в академічному та професійному середовищах. Містить завдання і вправи, типові для різноманітних академічних та професійних сфер і ситуацій. Структура організації змісту – модульна, охоплює мовні знання і мовленнєві вміння залежно від мовної поведінки. Даний модуль має на меті розвиток у студентів стратегій, умінь, навичок читання, пошуку та вилучення професійно-орієнтованої інформації, необхідної для ефективної професійної діяльності і навчання. Містить завдання і вправи, типові для академічних та професійних сфер, пов’язаних з гірництвом і розробкою родовищ корисних копалин. Зразки текстів – автентичні, різножанрові, взяті з реального життя, містять цікаву й актуальну інформацію про особливості видобутку мінеральних ресурсів в провідних країнах світу, сучасний підхід до розробки родовищ тощо. Ресурси для самостійної роботи (Частина ІІ) містять завдання та вправи для розширення словникового запасу та розвитку знань найуживанішої термінології з гірництва, що спрямовано на організацію самостійної роботи з розвитку мовленнєвих умінь, знань про корисні копалини, методи їх видобутку. За допомогою засобів діагностики студенти можуть самостійно перевірити засвоєння навчального матеріалу й оцінити свої досягнення. Призначений для студентів вищих навчальних закладів, зокрема технічних університетів. Може використовуватися для самостійного вивчення англійської мови викладачами, фахівцями і науковцями різних галузей

    Seismology - Responsibilities and requirements of a growing science. Part 2 - problems and prospects

    Get PDF
    Theoretical and applied seismology, earthquake engineering, earth structure, industrial uses, facilities, and underground nuclear explosion detectio

    The ICT Component of Technological Diversification: Is there an underestimation of ICT capabilities among the world's largest companies?

    Get PDF
    This empirical paper analyses the importance of information and communications technologies (ICT) in the technological diversification trend among the world's large industrial firms. The objective of the research is twofold. First, to emphasise the emerging differences among technologies when companies from different industries patent outside their traditional technological competencies. Second, to investigate whether the tendency among large companies from all industries to patent in ICT is distinctive when compared with other technologies. We find that technological diversification in large companies has certainly occurred in ICTs. For other technologies the results are ambiguous. As could be expected there is considerable industry variation in the intensity and specific directions of ICT patenting. We conclude that the development of corporate capabilities in the key technologies of the emerging ICT paradigm is more widespread than previously emphasised in the literature. One implication is that the rise of multi-technology corporations can be related to the concept of long waves of techno-economic change and to studies characterising ICT as a general-purpose technology.ICT, technological diversification, patents, corporate capabilities, long waves

    Report of the In Situ Resources Utilization Workshop

    Get PDF
    The results of a workshop of 50 representatives from the public and private sector which investigated the potential joint development of the key technologies and mechanisms that will enable the permanent habitation of space are presented. The workshop is an initial step to develop a joint public/private assessment of new technology requirements of future space options, to share knowledge on required technologies that may exist in the private sector, and to investigate potential joint technology development opportunities. The majority of the material was produced in 5 working groups: (1) Construction, Assembly, Automation and Robotics; (2) Prospecting, Mining, and Surface Transportation; (3) Biosystems and Life Support; (4) Materials Processing; and (5) Innovative Ventures. In addition to the results of the working groups, preliminary technology development recommendations to assist in near-term development priority decisions are presented. Finally, steps are outlined for potential new future activities and relationships among the public, private, and academic sectors

    Impacts of Western Coal, Oil Shale, and Tar Sands Development on Aquatic Environmental Quality: A Technical Information Matrix; Volume 1 Introduction and Instructions

    Get PDF
    Introduction: The Upper Colorado River Basin contains vast deposits of coal, oil shale, and tar sands, which could undergo extensive development should oil prices rise or an international situation restrict oil imports. Naturally, the prospect of development of these alternative fossil fuels resources has led to concern over how extraction and conversion activities will impact environmental quality. A thorough understanding of the nature and magnitude of the resulting envionemental impacts is a necessary prerequisite, if the costs and risks of such activites are to be weighed against the economic benefits. When we set out to evaluated these costs and risks, it soon became obvious that the voluminous literature in this area is difficult to access, often repetitive, and not well integrated into state-of-the-art reviews. This led us to realize the need to categorize and collate the results of such energy-related impact research in a way that would go beyond the compilation of a bibliography, or even keyworking relevant citations. The form of presentation that we eventually selected was the technical information matrix presented in this report. This matrix consists of information on the impacts of coal mining and conversion, oil shale mining and retoring, and tar sands development on four aspects of aquatic environmental quality: surface water and groundwater chemsitry, aquatic ecology, and aquifer modification. The report consists of three parts. This introductory volume contains instruction for use of the technical information matrix, a glossary, and sources of data on energy development and environmental impacts. Two additional looseleaf volumes contain the coal (II), and oil sahel and tar sands matrices (III), respectively, along with the corresponding matrix references and a bibliography of general (summary or overview) references. Each matrix volume also includes a list of symbols and abbreviations used in the matrix. Qualitatively, information on the three categories of fossil fuel development differs principally in amount, type, and geographical specificity. Coal extraction is a well-studied process in the East, where acid mine drainage and metal toxicity are well documented. In the West, surface mining of vast arid and semiarid tracts, as well as generally more alkaline mine drainage, has been less thoroughly studied. Nonetheless, commercial scale operations have been in place for a sufficiently long period, even in the West, to ahve produced a reasonably large data base. Coal conversion processes, although new, have also reached the commercial scale, and information is becoming relatively abundant. Conversely, environmental information is not generally availabel for the Scottish and Russian oil shale industries, or for the primitive industry in the Colorado Basin earlier in the century, and the present day oil shale industry in the west is insufficiently developed to have produced commerical scale case studies. Most information at present comes from pilot or semi-works facilities, and the impacts of a full-scale development over a 20-30 year project life are difficult to predict. Although Alberta, Canada, has a well developed tar sands industry, site specific information on tar sands development in the Colorado Basin is lacking. There are several areas of ommission in the coverage of sources of fossil fuel impact on aquatic environmental quality. Petroleum drilling, whose principal impacts in the Colorado Basin are related to interconnection of saline with good quality aquifers, creation of saline surface springs during exploration and illegal brine disposal practices has been omitted. Also, we have not pursued the effects of acid (e.g., Sox) base (e.g., NH3) or volatile metal (e.g., Hg) emissions to the atmosphere and their subsequent effects on downwind ecosystems when they are returned by precipitation or dry deposition. We have generally omitted the toxicological literature relating to occupational exposure (e.g., skin painting tests, etc.), as well as the impacts of water withdrawals on fish habitat through reduction of natural instream flows. In the latter cases such impacts require site specific consideration of hydrology and channel morphology. The more than 1300 citations in these matrices were gathered from a wide variety of refereed journals, symposium proceedings, government documents, abstracting services, and personal communications with researchers. The papers cited emphasize the period 1970-1981. Greatest emphasis was placed on the more recent literature, but late 1981 papers are probably underrepresented. There is also little doubt that we have failed to include some valuable material found in project reports, oral presentations, masters these, disserations, and similar sources. Certainly some citations were not optimally summarized or categorized, particularly when it was necessary to work from an abstract or summary. Hopefully, such exclusions or poor representations will not result in loss of excessive information or unduly mislead the users. We plan to update the matrix periodically, supplementing new information found with the searching techniques developed thus far and especially with information supplied by users. Updates will be in the form of looseleaf pages to be added to or substituted in Volumes I and II, and will be published as frequently as deemed necessary to cover developments in the subject areas. We would very much appreciate receiving copies (or summaries) of pertinent reports from the users of this matrix, together with corrections or improvements in the content or categorization of material presently in the matrix. There should be sent to: F.J. Post (coal) or Jay Messer (oil shale and tar sands) Utah Water Research Laboratory UMC 82 Utah State University Logan, UT 84322 They will be gratefully included in the next update
    corecore