4,402 research outputs found

    A comparative study of the AHP and TOPSIS methods for implementing load shedding scheme in a pulp mill system

    Get PDF
    The advancement of technology had encouraged mankind to design and create useful equipment and devices. These equipment enable users to fully utilize them in various applications. Pulp mill is one of the heavy industries that consumes large amount of electricity in its production. Due to this, any malfunction of the equipment might cause mass losses to the company. In particular, the breakdown of the generator would cause other generators to be overloaded. In the meantime, the subsequence loads will be shed until the generators are sufficient to provide the power to other loads. Once the fault had been fixed, the load shedding scheme can be deactivated. Thus, load shedding scheme is the best way in handling such condition. Selected load will be shed under this scheme in order to protect the generators from being damaged. Multi Criteria Decision Making (MCDM) can be applied in determination of the load shedding scheme in the electric power system. In this thesis two methods which are Analytic Hierarchy Process (AHP) and Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) were introduced and applied. From this thesis, a series of analyses are conducted and the results are determined. Among these two methods which are AHP and TOPSIS, the results shown that TOPSIS is the best Multi criteria Decision Making (MCDM) for load shedding scheme in the pulp mill system. TOPSIS is the most effective solution because of the highest percentage effectiveness of load shedding between these two methods. The results of the AHP and TOPSIS analysis to the pulp mill system are very promising

    Using Intelligent Prefetching to Reduce the Energy Consumption of a Large-scale Storage System

    Get PDF
    Many high performance large-scale storage systems will experience significant workload increases as their user base and content availability grow over time. The U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) center hosts one such system that has recently undergone a period of rapid growth as its user population grew nearly 400% in just about three years. When administrators of these massive storage systems face the challenge of meeting the demands of an ever increasing number of requests, the easiest solution is to integrate more advanced hardware to existing systems. However, additional investment in hardware may significantly increase the system cost as well as daily power consumption. In this paper, we present evidence that well-selected software level optimization is capable of achieving comparable levels of performance without the cost and power consumption overhead caused by physically expanding the system. Specifically, we develop intelligent prefetching algorithms that are suitable for the unique workloads and user behaviors of the world\u27s largest satellite images distribution system managed by USGS EROS. Our experimental results, derived from real-world traces with over five million requests sent by users around the globe, show that the EROS hybrid storage system could maintain the same performance with over 30% of energy savings by utilizing our proposed prefetching algorithms, compared to the alternative solution of doubling the size of the current FTP server farm

    Staging Transformations for Multimodal Web Interaction Management

    Get PDF
    Multimodal interfaces are becoming increasingly ubiquitous with the advent of mobile devices, accessibility considerations, and novel software technologies that combine diverse interaction media. In addition to improving access and delivery capabilities, such interfaces enable flexible and personalized dialogs with websites, much like a conversation between humans. In this paper, we present a software framework for multimodal web interaction management that supports mixed-initiative dialogs between users and websites. A mixed-initiative dialog is one where the user and the website take turns changing the flow of interaction. The framework supports the functional specification and realization of such dialogs using staging transformations -- a theory for representing and reasoning about dialogs based on partial input. It supports multiple interaction interfaces, and offers sessioning, caching, and co-ordination functions through the use of an interaction manager. Two case studies are presented to illustrate the promise of this approach.Comment: Describes framework and software architecture for multimodal web interaction managemen

    A schema-based P2P network to enable publish-subscribe for multimedia content in open hypermedia systems

    No full text
    Open Hypermedia Systems (OHS) aim to provide efficient dissemination, adaptation and integration of hyperlinked multimedia resources. Content available in Peer-to-Peer (P2P) networks could add significant value to OHS provided that challenges for efficient discovery and prompt delivery of rich and up-to-date content are successfully addressed. This paper proposes an architecture that enables the operation of OHS over a P2P overlay network of OHS servers based on semantic annotation of (a) peer OHS servers and of (b) multimedia resources that can be obtained through the link services of the OHS. The architecture provides efficient resource discovery. Semantic query-based subscriptions over this P2P network can enable access to up-to-date content, while caching at certain peers enables prompt delivery of multimedia content. Advanced query resolution techniques are employed to match different parts of subscription queries (subqueries). These subscriptions can be shared among different interested peers, thus increasing the efficiency of multimedia content dissemination

    Realistic Traffic Generation for Web Robots

    Full text link
    Critical to evaluating the capacity, scalability, and availability of web systems are realistic web traffic generators. Web traffic generation is a classic research problem, no generator accounts for the characteristics of web robots or crawlers that are now the dominant source of traffic to a web server. Administrators are thus unable to test, stress, and evaluate how their systems perform in the face of ever increasing levels of web robot traffic. To resolve this problem, this paper introduces a novel approach to generate synthetic web robot traffic with high fidelity. It generates traffic that accounts for both the temporal and behavioral qualities of robot traffic by statistical and Bayesian models that are fitted to the properties of robot traffic seen in web logs from North America and Europe. We evaluate our traffic generator by comparing the characteristics of generated traffic to those of the original data. We look at session arrival rates, inter-arrival times and session lengths, comparing and contrasting them between generated and real traffic. Finally, we show that our generated traffic affects cache performance similarly to actual traffic, using the common LRU and LFU eviction policies.Comment: 8 page
    • …
    corecore