1,499 research outputs found

    Simpler is better: a novel genetic algorithm to induce compact multi-label chain classifiers

    Get PDF
    Multi-label classification (MLC) is the task of assigning multiple class labels to an object based on the features that describe the object. One of the most effective MLC methods is known as Classifier Chains (CC). This approach consists in training q binary classifiers linked in a chain, y1 → y2 → ... → yq, with each responsible for classifying a specific label in {l1, l2, ..., lq}. The chaining mechanism allows each individual classifier to incorporate the predictions of the previous ones as additional information at classification time. Thus, possible correlations among labels can be automatically exploited. Nevertheless, CC suffers from two important drawbacks: (i) the label ordering is decided at random, although it usually has a strong effect on predictive accuracy; (ii) all labels are inserted into the chain, although some of them might carry irrelevant information to discriminate the others. In this paper we tackle both problems at once, by proposing a novel genetic algorithm capable of searching for a single optimized label ordering, while at the same time taking into consideration the utilization of partial chains. Experiments on benchmark datasets demonstrate that our approach is able to produce models that are both simpler and more accurate

    Deep Extreme Multi-label Learning

    Full text link
    Extreme multi-label learning (XML) or classification has been a practical and important problem since the boom of big data. The main challenge lies in the exponential label space which involves 2L2^L possible label sets especially when the label dimension LL is huge, e.g., in millions for Wikipedia labels. This paper is motivated to better explore the label space by originally establishing an explicit label graph. In the meanwhile, deep learning has been widely studied and used in various classification problems including multi-label classification, however it has not been properly introduced to XML, where the label space can be as large as in millions. In this paper, we propose a practical deep embedding method for extreme multi-label classification, which harvests the ideas of non-linear embedding and graph priors-based label space modeling simultaneously. Extensive experiments on public datasets for XML show that our method performs competitive against state-of-the-art result
    • …
    corecore