3,001 research outputs found

    Quality Prediction in Interlinked Manufacturing Processes based on Supervised & Unsupervised Machine Learning

    Get PDF
    AbstractIn the context of a rolling mill case study, this paper presents a methodical framework based on data mining for predicting the physical quality of intermediate products in interlinked manufacturing processes. In the first part, implemented data preprocessing and feature extraction components of the Inline Quality Prediction System are introduced. The second part shows how the combination of supervised and unsupervised data mining methods can be applied to identify most striking operational patterns, promising quality-related features and production parameters. The results indicate how sustainable and energy-efficient interlinked manufacturing processes can be achieved by the application of data mining

    Advanced predictive quality control strategy involving different facilities

    Get PDF
    There are many industries that use highly technological solutions to improve quality in all of their products. The steel industry is one example. Several automatic surface-inspection systems are used in the steel industry to identify various types of defects and to help operators decide whether to accept, reroute, or downgrade the material, subject to the assessment process. This paper focuses on promoting a strategy that considers all defects in an integrated fashion. It does this by managing the uncertainty about the exact position of a defect due to different process conditions by means of Gaussian additive influence functions. The relevance of the approach is in making possible consistency and reliability between surface inspection systems. The results obtained are an increase in confidence in the automatic inspection system and an ability to introduce improved prediction and advanced routing models. The prediction is provided to technical operators to help them in their decision-making process. It shows the increase in improvement gained by reducing the 40 % of coils that are downgraded at the hot strip mill because of specific defects. In addition, this technology facilitates an increase of 50 % in the accuracy of the estimate of defect survival after the cleaning facility in comparison to the former approach. The proposed technology is implemented by means of software-based, multi-agent solutions. It makes possible the independent treatment of information, presentation, quality analysis, and other relevant functions

    Towards A Computational Intelligence Framework in Steel Product Quality and Cost Control

    Get PDF
    Steel is a fundamental raw material for all industries. It can be widely used in vari-ous fields, including construction, bridges, ships, containers, medical devices and cars. However, the production process of iron and steel is very perplexing, which consists of four processes: ironmaking, steelmaking, continuous casting and rolling. It is also extremely complicated to control the quality of steel during the full manufacturing pro-cess. Therefore, the quality control of steel is considered as a huge challenge for the whole steel industry. This thesis studies the quality control, taking the case of Nanjing Iron and Steel Group, and then provides new approaches for quality analysis, manage-ment and control of the industry. At present, Nanjing Iron and Steel Group has established a quality management and control system, which oversees many systems involved in the steel manufacturing. It poses a high statistical requirement for business professionals, resulting in a limited use of the system. A lot of data of quality has been collected in each system. At present, all systems mainly pay attention to the processing and analysis of the data after the manufacturing process, and the quality problems of the products are mainly tested by sampling-experimental method. This method cannot detect product quality or predict in advance the hidden quality issues in a timely manner. In the quality control system, the responsibilities and functions of different information systems involved are intricate. Each information system is merely responsible for storing the data of its corresponding functions. Hence, the data in each information system is relatively isolated, forming a data island. The iron and steel production process belongs to the process industry. The data in multiple information systems can be combined to analyze and predict the quality of products in depth and provide an early warning alert. Therefore, it is necessary to introduce new product quality control methods in the steel industry. With the waves of industry 4.0 and intelligent manufacturing, intelligent technology has also been in-troduced in the field of quality control to improve the competitiveness of the iron and steel enterprises in the industry. Applying intelligent technology can generate accurate quality analysis and optimal prediction results based on the data distributed in the fac-tory and determine the online adjustment of the production process. This not only gives rise to the product quality control, but is also beneficial to in the reduction of product costs. Inspired from this, this paper provide in-depth discussion in three chapters: (1) For scrap steel to be used as raw material, how to use artificial intelligence algorithms to evaluate its quality grade is studied in chapter 3; (2) the probability that the longi-tudinal crack occurs on the surface of continuous casting slab is studied in chapter 4;(3) The prediction of mechanical properties of finished steel plate in chapter 5. All these 3 chapters will serve as the technical support of quality control in iron and steel production

    Rails Quality Data Modelling via Machine Learning-Based Paradigms

    Get PDF

    Recent Advances and Applications of Machine Learning in Metal Forming Processes

    Get PDF
    Machine learning (ML) technologies are emerging in Mechanical Engineering, driven by the increasing availability of datasets, coupled with the exponential growth in computer performance. In fact, there has been a growing interest in evaluating the capabilities of ML algorithms to approach topics related to metal forming processes, such as: Classification, detection and prediction of forming defects; Material parameters identification; Material modelling; Process classification and selection; Process design and optimization. The purpose of this Special Issue is to disseminate state-of-the-art ML applications in metal forming processes, covering 10 papers about the abovementioned and related topics

    A multi-source feature-level fusion approach for predicting strip breakage in cold rolling

    Get PDF
    As an undesired and instantaneous failure in the production of cold-rolled strip products, strip breakage results in yield loss, reduced work speed and further equipment damage. Typically, studies have investigated this failure in a retrospective way focused on root cause analyses, and these causes are proven to be multi-faceted. In order to model the onset of this failure in a predictive manner, an integrated multi-source feature-level approach is proposed in this work. Firstly, by harnessing heterogeneous data across the breakage-relevant processes, blocks of data from different sources are collected to improve the breadth of breakage-centric information and are pre-processed according to its granularity. Afterwards, feature extraction or selection is applied to each block of data separately according to the domain knowledge. Matrices of selected features are concatenated in either flattened or expanded manner for comparison. Finally, fused features are used as inputs for strip breakage prediction using recurrent neural networks (RNNs). An experimental study using real-world data instantaneouseffectiveness of the proposed approach

    Book of abstracts of the 16th International Symposium of Croatian Metallurgical Society - SHMD \u272023, Materials and metallurgy

    Get PDF
    Book of abstracts of the 16th International Symposium of Croatian Metallurgical Society - SHMD \u272023, Materials and metallurgy, Zagreb, Croatia, April 20-21, 2023. Abstracts are organized into five sections: Anniversaries of Croatian Metallurgy, Materials - Section A; Process Metallurgy - Section B; Plastic Processing - Section C and Metallurgy and Related Topics - Section D

    Data-driven metallurgical design for high strength low alloy (HSLA) steel

    Get PDF
    Metallurgical design of microalloyed steel used to be a challenge due to its multivariate nature. Over ten kinds of microalloying elements and multi-step processing routes have complex interactions and different contributions to the final mechanical properties. Data-driven model is able to throw a rapid insight into the composition-processing -property correlation of steel metallurgy in a systematical and efficient way. In this study, a data mining technology, Recursive Partitioning is applied to model the tensile properties of high strength low alloyed (HSLA) steel. The results show that recursive partitioning is able to reveal the complex nonlinear dependence of tensile properties of HSLA steel upon the composition and hot rolling processing parameters. With a relatively simple mathematical structure, Recursive Partitioning can achieve effective performance in predicting the yield strength, ultimate tensile strength, and elongation of steel. In addition, the tree-graph representation of the results provides a powerful multi-dimensional screening tool for searching interesting regions in the composition-processing space, which can be used as a guideline for metallurgical design and further experimental and computational investigation

    Book of abstracts of the 15th International Symposium of Croatian Metallurgical Society - SHMD \u272022, Materials and metallurgy

    Get PDF
    Book of abstracts of the 15th International Symposium of Croatian Metallurgical Society - SHMD \u272022, Materials and metallurgy, Zagreb, Croatia, March 22-23, 2022. Abstracts are organized in four sections: Materials - section A; Process metallurgy - Section B; Plastic processing - Section C and Metallurgy and related topics - Section D
    • …
    corecore