8,026 research outputs found

    Statistical Physics of Rupture in Heterogeneous Media

    Get PDF
    The damage and fracture of materials are technologically of enormous interest due to their economic and human cost. They cover a wide range of phenomena like e.g. cracking of glass, aging of concrete, the failure of fiber networks in the formation of paper and the breaking of a metal bar subject to an external load. Failure of composite systems is of utmost importance in naval, aeronautics and space industry. By the term composite, we refer to materials with heterogeneous microscopic structures and also to assemblages of macroscopic elements forming a super-structure. Chemical and nuclear plants suffer from cracking due to corrosion either of chemical or radioactive origin, aided by thermal and/or mechanical stress. Despite the large amount of experimental data and the considerable effort that has been undertaken by material scientists, many questions about fracture have not been answered yet. There is no comprehensive understanding of rupture phenomena but only a partial classification in restricted and relatively simple situations. This lack of fundamental understanding is indeed reflected in the absence of reliable prediction methods for rupture, based on a suitable monitoring of the stressed system. Not only is there a lack of non-empirical understanding of the reliability of a system, but also the empirical laws themselves have often limited value. The difficulties stem from the complex interplay between heterogeneities and modes of damage and the possible existence of a hierarchy of characteristic scales (static and dynamic). The paper presents a review of recent efforts from the statistical physics community to address these points.Comment: Enlarged review and updated references, 21 pages with 2 figure

    Effect of Filler Metals on Creep Properties of 2.25Cr-1Mo Steel Weld Joints Prepared by GTAW Process

    Get PDF
    This research aims at comparing creep properties at elevated temperatures obtained on welding 2.25Cr-1Mo steel using gas tungsten arc welding (GTAW) with ER90S-G and ERNiCrMo-3 filler metals. The high temperature accelerated creep rupture test of 2.25Cr-1Mo welded samples was investigated over 139 to 315 MPa stress range at temperatures of 550 °C, 600 °C, and 650 °C. The samples were preheated at 250 °C for 0.5 hours and post-weld heat-treated at 690 °C for 1 hour. The results showed that the accelerated creep rupture lives of lower applied stress specimens were much longer than those of higher applied stress, when both welded materials were tested under same temperature conditions. The service lifetime of the welded materials can be predicted using the extrapolation of the Larson-Miller parameter. Creep surface fractures were investigated using SEM fractography that indicated the weldment fracture modes consisted of dimple ruptures and micro-voids coalescence in the fibrous matrix of the intercritical region of HAZ. Similar high-temperature creeps service lives were found in both welded materials

    Continuous maintenance and the future – Foundations and technological challenges

    Get PDF
    High value and long life products require continuous maintenance throughout their life cycle to achieve required performance with optimum through-life cost. This paper presents foundations and technologies required to offer the maintenance service. Component and system level degradation science, assessment and modelling along with life cycle ‘big data’ analytics are the two most important knowledge and skill base required for the continuous maintenance. Advanced computing and visualisation technologies will improve efficiency of the maintenance and reduce through-life cost of the product. Future of continuous maintenance within the Industry 4.0 context also identifies the role of IoT, standards and cyber security

    Achieving a holistic view of the life cycle performance of existing dwellings

    Get PDF
    Models which fully evaluate the life cycle energy and greenhouse gas (GHG) emissions of national housing stocks are not reported in literature. Capturing a holistic view of energy and emissions of the residential sector is an important process that can lead to a more effective policy making. This paper presents a methodology which evaluates the life cycle energy and GHG emissions of retrofitting housing stocks considering all life cycle stages and incorporating, to the greatest extent possible, all upstream inputs. To achieve this, we developed a hybrid model of the existing Irish housing stock, comprising a process-based approach supplemented by input-output LCA for installation of materials and fit-outs and maintenance of appliances. Life cycle analysis (LCA) is a commonly accepted technique for evaluating cradle-to-grave environmental impacts of a product. Using an assumed 50-year life span in all cases, representative archetypes were used to estimate the performance along retro fitting, operation, maintenance and disassembly phases of the three selected house retrofit scenarios: BaseCase (no interven- tion), Current Standards (retrofitting to meet current building regulations) and Passive House (retrofitting to meet Passive House Standards). Results show that detached houses displayed the highest range of life cycle energy and exhibited the greatest absolute and percentage reductions compared to other house types, as life cycle energy ranges from 386-614 kWh/m2yr, 225-261 kWh/m2yr and 126-137 kWh/m2yr for all house scenarios, respectively. Using these results an assessment is provided for policy makers on a holistic view of the life cycle performance of existing dwellings

    Do additive manufactured parts deserve better?

    Get PDF
    Additive manufacturing of metallic components is regarded as one of the more exciting developments in engineering. The combined attractions of near net shape, tailored composition, and geometry optimisation have led to much interest in the various processes used and a drive to improve the mechanical properties to match those of wrought parts. In this paper, we reflect on the apparent lack of ambition in optimising the structural integrity of parts made using these new manufacturing processes. The current research focus seems to be either on largely irrelevant static properties, or on quantifying the fatigue response in a way that would be familiar to engineers in the 19th Century. Given the work on the role of microstructure and fatigue, which dates back to Ewing and Humphrey in 1903 reaching its zenith in the 1980s and 90s with Keith Miller in the vanguard, and recent developments in both imaging technologies and sophisticated numerical modelling, all the elements are in place for a much more rigorous, and ultimately more fruitful, approach to understand the structural integrity of additive manufactured components

    Predicting Mechanical Properties of Galvanized Steels: Data Mining Approach

    Full text link
    The purpose of this paper is to predict the mechanical properties of galvanized steel, using appropriate data mining techniques such as neural network, support vector machine, regression analysis and regression tree methods. It is found that by using the neural network technique one can get the best result for predicting the mechanical properties of galvanized steel according to the values of input parameters and also considering the effects of annealing temperature and line speed as the controlling parameters

    Life cycle assessment of lithium-ion batteries and vanadium redox flow batteries-based renewable energy storage systems

    Get PDF
    Renewable energy has become an important alternative to fossil energy, as it is associated with lower greenhouse gas emissions. However, the intermittent characteristic of renewables urges for energy storage systems, which play an important role in matching the supply and demand of renewable-based electricity. The life cycle of these storage systems results in environmental burdens, which are investigated in this study, focusing on lithium-ion and vanadium flow batteries for renewable energy (solar and wind) storage for grid applications. The impacts are assessed through a life cycle assessment covering the batteries supply phase, their use and end-of-life, with experimental data from test set-ups. The battery composition is investigated in detail as a factor for the final impacts, by comparing two types of cathodes for the lithium-ion battery and the use of recycled electrolyte for the vanadium flow battery. Results indicate that the vanadium-based storage system results in overall lower impacts when manufactured with 100% fresh raw materials, but the impacts are significantly lowered if 50% recycled electrolyte is used, with up to 45.2% lower acidification and 11.1% lower global warming potential. The new lithium-ion battery cathode chemistry results in overall higher impacts, with 41.7% more particulate matter and 52.2% more acidification

    Corrosion challenges towards a sustainable society

    Get PDF
    A global transition towards more sustainable, affordable and reliable energy systems is being stimulated by the Paris Agreement and the United Nation's 2030 Agenda for Sustainable Development. This poses a challenge for the corrosion industry, as building climate-resilient energy systems and infrastructures brings with it a long-term direction, so as a result the long-term behaviour of structural materials (mainly metals and alloys) becomes a major prospect. With this in mind "Corrosion Challenges Towards a Sustainable Society" presents a series of cases showing the importance of corrosion protection of metals and alloys in the development of energy production to further understand the science of corrosion, and bring the need for research and the consequences of corrosion into public and political focus. This includes emphasis on the limitation of greenhouse gas emissions, on the lifetime of infrastructures, implants, cultural heritage artefacts, and a variety of other topics

    Report : data mining of life prediction data bases

    Get PDF
    corecore