3,917 research outputs found

    SeMA: A Design Methodology for Building Secure Android Apps

    Full text link
    UX (user experience) designers visually capture the UX of an app via storyboards. This method is also used in Android app development to conceptualize and design apps. Recently, security has become an integral part of Android app UX because mobile apps are used to perform critical activities such as banking, communication, and health. Therefore, securing user information is imperative in mobile apps. In this context, storyboarding tools offer limited capabilities to capture and reason about security requirements of an app. Consequently, security cannot be baked into the app at design time. Hence, vulnerabilities stemming from design flaws can often occur in apps. To address this concern, in this paper, we propose a storyboard based design methodology to enable the specification and verification of security properties of an Android app at design time.Comment: Updates based on AMobile 2019 review

    An Event-based Analysis Framework for Open Source Software Development Projects

    Get PDF
    The increasing popularity and success of Open Source Software (OSS) development projects has drawn significant attention of academics and open source participants over the last two decades. As one of the key areas in OSS research, assessing and predicting OSS performance is of great value to both OSS communities and organizations who are interested in investing in OSS projects. Most existing research, however, has considered OSS project performance as the outcome of static cross-sectional factors such as number of developers, project activity level, and license choice. While variance studies can identify some predictors of project outcomes, they tend to neglect the actual process of development. Without a closer examination of how events occur, an understanding of OSS projects is incomplete. This dissertation aims to combine both process and variance strategy, to investigate how OSS projects change over time through their development processes; and to explore how these changes affect project performance. I design, instantiate, and evaluate a framework and an artifact, EventMiner, to analyze OSS projects’ evolution through development activities. This framework integrates concepts from various theories such as distributed cognition (DCog) and complexity theory, applying data mining techniques such as decision trees, motif analysis, and hidden Markov modeling to automatically analyze and interpret the trace data of 103 OSS projects from an open source repository. The results support the construction of process theories on OSS development. The study contributes to literature in DCog, design routines, OSS development, and OSS performance. The resulting framework allows OSS researchers who are interested in OSS development processes to share and reuse data and data analysis processes in an open-source manner

    Biomedical Informatics Applications for Precision Management of Neurodegenerative Diseases

    Get PDF
    Modern medicine is in the midst of a revolution driven by “big data,” rapidly advancing computing power, and broader integration of technology into healthcare. Highly detailed and individualized profiles of both health and disease states are now possible, including biomarkers, genomic profiles, cognitive and behavioral phenotypes, high-frequency assessments, and medical imaging. Although these data are incredibly complex, they can potentially be used to understand multi-determinant causal relationships, elucidate modifiable factors, and ultimately customize treatments based on individual parameters. Especially for neurodegenerative diseases, where an effective therapeutic agent has yet to be discovered, there remains a critical need for an interdisciplinary perspective on data and information management due to the number of unanswered questions. Biomedical informatics is a multidisciplinary field that falls at the intersection of information technology, computer and data science, engineering, and healthcare that will be instrumental for uncovering novel insights into neurodegenerative disease research, including both causal relationships and therapeutic targets and maximizing the utility of both clinical and research data. The present study aims to provide a brief overview of biomedical informatics and how clinical data applications such as clinical decision support tools can be developed to derive new knowledge from the wealth of available data to advance clinical care and scientific research of neurodegenerative diseases in the era of precision medicine

    From Social Data Mining to Forecasting Socio-Economic Crisis

    Full text link
    Socio-economic data mining has a great potential in terms of gaining a better understanding of problems that our economy and society are facing, such as financial instability, shortages of resources, or conflicts. Without large-scale data mining, progress in these areas seems hard or impossible. Therefore, a suitable, distributed data mining infrastructure and research centers should be built in Europe. It also appears appropriate to build a network of Crisis Observatories. They can be imagined as laboratories devoted to the gathering and processing of enormous volumes of data on both natural systems such as the Earth and its ecosystem, as well as on human techno-socio-economic systems, so as to gain early warnings of impending events. Reality mining provides the chance to adapt more quickly and more accurately to changing situations. Further opportunities arise by individually customized services, which however should be provided in a privacy-respecting way. This requires the development of novel ICT (such as a self- organizing Web), but most likely new legal regulations and suitable institutions as well. As long as such regulations are lacking on a world-wide scale, it is in the public interest that scientists explore what can be done with the huge data available. Big data do have the potential to change or even threaten democratic societies. The same applies to sudden and large-scale failures of ICT systems. Therefore, dealing with data must be done with a large degree of responsibility and care. Self-interests of individuals, companies or institutions have limits, where the public interest is affected, and public interest is not a sufficient justification to violate human rights of individuals. Privacy is a high good, as confidentiality is, and damaging it would have serious side effects for society.Comment: 65 pages, 1 figure, Visioneer White Paper, see http://www.visioneer.ethz.c
    • …
    corecore